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Based on various requirements, many generalized rough set models have been developed 
to alleviate the limitations of generic Pawlak rough set theory and tackle different 
categories of information systems. One of the limitations is that rough set models based 
on equivalence relation are only applicable to discrete data information systems, and not 
suitable for dealing with real-valued continuous data without any prior processing. Another 
limitation is that “classical” rough sets do not consider the quantitative information about 
the degree of overlap between equivalence classes and the basic set, so they cannot cope 
well with the quantification problems. In this paper, we propose a framework of distance-
based double-quantitative rough fuzzy set (Db-Dq-RFS) with logic operation by forming a 
distance-based fuzzy similarity relation in an information system with continuous data to 
simultaneously solve the two limitations. It is presented how to construct the distance-
based fuzzy similarity relation in a normalized information system, and how to use 
this fuzzy similarity relation to generate distance-based single-quantitative rough fuzzy 
set (Db-Sq-RFS) models and the Db-Dq-RFS models with logic operation. The proposed 
Db-Dq-RFS models can overcome certain limitations of the classical rough set model. 
Following further studies to discuss the decision rules with parameters variation in the 
four kinds of Db-Dq-RFS models, we present an illustrative example to interpret the 
proposed developments and to verify the effect of parameters variation on decision rules. 
To illustrate the effectiveness of the parameters variation on decision rules, experimental 
evaluation is performed using five datasets coming from the University of California–Irvine 
(UCI) repository.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Rough set theory [39] is an extension of set theory and a such could be regarded as a mathematical tool to handle 
imprecision, vagueness and uncertainty in data analysis. This relatively new soft computing methodology has received great 
attention in recent years, and its usefulness has been confirmed through successful applications in many areas science 
and engineering, such as pattern recognition, data mining, image processing, and medical diagnosis. Rough set theory is 
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built on the basis of the classification mechanism, it is classified as the equivalence relation in a specific universe, and 
the equivalence relation constitutes a partition of the universe. A concept, or more precisely the extension of a concept, is 
represented by a subset of a universe of objects and is approximated by a pair of definable concepts of a logic language. 
However, classical rough set models exhibit limitations in real-life applications. These limitations are mainly embodied and 
concluded as follows. Firstly, Pawlak rough sets do not deal well with the quantification problems. The relationship between 
equivalence classes and the basic set is so strict that there are no fault tolerance mechanisms available, and the quantitative 
information about the degree of overlap of the equivalence classes and the basic set is not taken into consideration. In 
fact, there are some degrees of inclusion relations between sets, and the extent of overlap of sets is important information 
to consider in applications. Secondly, the requirement imposed on an equivalence relation in Pawlak rough set model is 
a stringent condition that has limited the application domains of the theory. When we use the rough set to deal with 
numerical data, the rough set theory based on equivalence relations is mainly applicable to the information systems with 
discrete data. In case of continuous numerical data, a discretization process has to be completed, and this preprocessing will 
commonly result in loss of information, reducing the classification accuracy.

To overcome the first limitation, improving the Pawlak rough set model by incorporating quantitative information is 
a promising direction and model expansions that include such quantification are of particular relevance [26,34,61,67,72,
73]. The improved models are called quantitative rough set models; they include probabilistic rough set (PRS) model [59,
60] and graded rough set (GRS) model [62]. As pointed out in [72,73], PRS and GRS are the two different and typical 
single-quantitative rough set models. As to the second limitation, one of the main directions of research is to develop 
generalized rough sets by using the non-equivalence relation to take the place of the equivalence relation [4,29]. Many 
researchers have presented the notion of approximation operators by using tolerance relation [21,57], neighborhood relation 
[17,51], similarity relation [3,44], and others [18,19,25–28,31,52] to solve the second limitation. Pawlak rough set model 
can be extended to a fuzzy domain by replacing the equivalence relation with fuzzy equivalence relation [18,37]. Fuzzy 
equivalence relation satisfies reflexivity, symmetry and transitivity. As a more general and extensive relation than fuzzy 
equivalence relation, the similarity relation only satisfies the properties of reflexivity and symmetry.

PRS model and its generalizations can be formulated based on the notion of rough membership functions and rough 
inclusion. Threshold values, serving as parameters, are applied to a rough membership function or a rough inclusion to 
obtain probabilistic or parameterized approximations. Three probabilistic rough set models have been proposed and studied 
intensively, which are decision-theoretic rough set (DTRS) model [2,9,22,23,33,43,46,63], variable precision rough set model 
[76], and Bayesian rough set model [75]. The main differences among these models are their different, but equivalent, 
formulations of probabilistic approximations and interpretations of the required parameters. Since Yao and Lin explored the 
relationships between rough sets and modal logics, they proposed the GRS model based on graded modal logics [62]. GRS 
model primarily considers the absolute quantitative information regarding the basic concept and knowledge granules, and 
it is also a generalization of the Pawlak rough set model. The regions of the GRS model also extend the corresponding 
notions used in the classical rough set models. Because the inclusion relation of the grade approximations does not hold 
any longer, positive and negative regions, upper and lower boundary regions are naturally proposed. They classify the 
universe more precisely and exhibit their own logical meanings related to the grade quantitative index. GRS model considers 
absolute quantitative information between equivalence classes and the basic concept [32,72,73]. PRS model and GRS model 
can reflect relative quantitative information and absolute quantitative information about the degree of overlap between 
equivalence classes and a basic concept, respectively. The relative and absolute quantitative information are two distinct 
objective sides that describe approximate space, and each has its own virtues and pertinent application environments, 
so that none can be neglected. Relative quantitative information and absolute quantitative information are two kinds of 
quantification mythologies encountered in certain applications. From the examples reported in [26,72], both quantification 
indexes exhibit a close, supplementary, and dialectical relationship, and each one actually has its own representation virtues 
and application environments. It should be noted that the existing models regarding to double quantification studied in [11,
26,54,64,68–73] are all based on equivalence relations. That is to say, these studies can only overcome the first limitation, 
while cannot address the second limitation.

As it has been pointed out before, the second limitation can be eliminated by replacing the equivalence relation with 
similarity relation. From the results presented in [5,15,17,53], the distance provides a comprehensible perspective for char-
acterizing the difference between two objects in a metric space. In other words, distances between objects can describe 
similarities between them, which means that the distance matrices between objects can be used to induce similarity rela-
tions. Many different kinds of distance functions have been proposed to work for numerical attribute values in the research 
field of statistics [6], pattern cognition [8], and cognitive computing [38,50,55]. Recently, Cook et al. presented a general 
framework for distance-based consensus in ordinal ranking models [7]. Gesu and Starovoitov investigated the distance func-
tion for the application of image comparison [13]. Angiulli et al. studied a distance-based detection and prediction of 
outliers [1]. Khalifeh et al. covered some new results on distance-based graph invariants [20]. Luxburg and Bousquet used 
the Lischitz functions to make the distance-based classifications in information system [36]. Song et al. investigated the 
self-similarity of objects in the complex networks [45]. Leu et al. proposed a distance-based fuzzy time series model for 
exchange rates forecasting [24]. Yu et al. developed a distance-based group decision-making methodology for multi-person 
multi-criteria emergency decision support [65]. Luukka proposed the similarity classifier based on modified probabilistic 
equivalence relations [35]. Liang et al. introduced a set distance to understand measures from rough set theory from the 
viewpoint of distance [30]. Inspired by the above distance-based studies, a novel fuzzy similarity relation based on the 



208 W. Li et al. / International Journal of Approximate Reasoning 101 (2018) 206–233
distance matrix is proposed in this paper to characterize the similarity between objects in an information system, which 
is called distance-based fuzzy similarity relation. The distance-based fuzzy similarity relation categorizes objects into the 
classes with fuzzy boundaries depend on their similarity, and it is presented to address the second limitation.

It should be noted that the models (Db-Sq-RFS and Db-Dq-RFS) proposed in this study are quite different from the typical 
fuzzy rough set model [10] addressed by Dubois and Prade and its generalizations [3,4,12,16,18,47–49,51]. The main differ-
ences are shown as follows. (1) The method of how to obtain the fuzzy similarity relation is not discussed in Dubois’s fuzzy 
rough set model. However, this study provides a visual and systematic formation process for obtaining the distance-based 
fuzzy similarity relation. (2) The set type of the obtained approximations in this paper is completely different from the set 
type of the approximations in Dubois’s fuzzy rough set model. In Dubois’s fuzzy rough set model, the membership functions 
for upper and lower approximations are obtained firstly, which means that the upper and lower approximations are fuzzy 
sets. However, the upper and lower approximations defined in this study are classical sets, and it means that we use two 
classical sets (upper and lower approximations) to approximate a given fuzzy set. (3) The quantitative information is not 
reflected on Dubois’s fuzzy rough set model. While the Db-Sq-RFS models can reflect one kind of quantitative information, 
and the Db-Dq-RFS models can reflect two kinds of quantitative information in their upper and lower approximations.

From the above analysis, we observe that only one of the two limitations mentioned above are considered in most 
existing works on generalized rough set models, there are few models that could handle both of these two issues at the 
same time. The models presented in this study are aimed to address these two issues simultaneously. This is the motivation 
behind the research presented here. By considering the distance-based fuzzy similarity relation in rough set models with 
double quantification, our objective is to introduce a framework of Db-Dq-RFS model with logic operation to solve these 
two issues simultaneously. We tend to classify data for simplification and memorization of information in our cognition and 
use the Db-Dq-RFS to classify the vague and fuzzy data. The paper is organized as follows. Related concepts and definitions 
are reviewed briefly in Section 2. In Section 3, we discuss the distance matrix between any two objects, and present the 
formation of distance-based fuzzy similarity relation to deal with categorical data in a normalized information system. In 
Section 4, we first investigate two kinds of Db-Sq-RFS models, which are Db-PRFS and Db-GRFS, then we present Db-Dq-RFS 
models by building upper and lower approximations with fuzzy similarity classes. In Section 5, we discuss decision rules 
with parameters variation for each Db-Dq-RFS model, and a detailed example is presented to illustrate the provided models 
and their corresponding decision rules. In Section 6, we do the experimental testing by five datasets from the UCI datasets, 
and relevant comparisons are made with existing models. Finally, Section 7 covers some conclusions.

2. Related work and fundamentals

In this section, some basic preliminaries and necessary concepts are briefly introduced and reviewed. For the non-empty 
set U , the class of all subsets of U is denoted by P(U ), and the class of all fuzzy subsets of U is denoted by F(U ). The 
complementary set of X is denoted by ∼ X .

Zadeh introduced fuzzy sets [66] in which a fuzzy subset X̃ of U is defined as a membership function assigning to each 
element x of U a certain degree of membership. The value X̃(x) ∈ [0, 1] and X̃(x) is referred to as the membership degree of 
x to the fuzzy set X̃ . For any fuzzy concepts X̃, ̃Y ∈F(U ), we say that X̃ is contained in Ỹ , denoted by X̃ ⊆ Ỹ , if X̃(x) ≤ Ỹ (x)
for all x ∈ U ; we say that X̃ = Ỹ if and only if X̃ ⊆ Ỹ and X̃ ⊇ Ỹ . The basic operations on fuzzy set are described as follows.

( X̃ ∪ Ỹ )(x) = max{ X̃(x), Ỹ (x)} = X̃(x) ∨ Ỹ (x);
( X̃ ∩ Ỹ )(x) = min{ X̃(x), Ỹ (x)} = X̃(x) ∧ Ỹ (x);
∼ X̃(x) = 1 − X̃(x),

where “∨” and “∧” are the maximum operator and minimum operator, respectively.
The notion of information system provides a convenient basis for the representation of objects in terms of their at-

tributes.

Definition 2.1 (Information system). An information system is a tuple (U , A, V , f ), where U is a non-empty and finite set of 
objects, and U = {x1, x2, · · ·, xn}; A is a non-empty and finite set of attributes, and A = {a1, a2, · · ·, am}; f = { fl|U → Vl,

l ≤ m}, fl is the value of al on x ∈ U , Vl is the domain of al , al ∈ A.

A decision information system is an information system (U , A ∪ D, V , f ), where A ∩ D = ∅, A is the condition attribute 
set, while D is called the decision attribute set. In the decision information system, R A and R D are equivalence relations 
induced by A and D , respectively. The constructions of R A and R D are expressed as follows. R A = {(x, y) ∈ U × U | fl(x) =
fl(y), ∀al ∈ A} and R D = {(x, y) ∈ U × U | fk(x) = fk(y), ∀dk ∈ D}. It is easy to see that R A partitions the universe U into 
disjoint subsets, the same to R D . Such a partition of the universe is a quotient set of U and is denoted by U/R A = {[x]R A |x ∈
U }, where [x]R A is called equivalence class containing x with respect to R A , and [x]R A = {y ∈ U |(x, y) ∈ R A}. If R A ⊆ R D , 
then we say that (U , A ∪ D, V , f ) is consistent, otherwise it is inconsistent. For the sake of simplicity, in the sequel, we set 
D = {d}, Vd = {1, 2, · · · , r}, and U/R D = {D1, D2, · · · , Dr}. D j is the decision class D j = {x ∈ U |d(x) = j}.
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Definition 2.2 (Pawlak rough set [39]). Let I = (U , A, V , f ) be an information system and R be an equivalence relation. For 
any X ⊆ U , one can characterize X by a pair of upper and lower approximations which are

R(X) = {x ∈ U |[x]R ∩ X �= ∅},
R(X) = {x ∈ U |[x]R ⊆ X}.

For a target concept X ⊆ U , if R(X) = R(X), X is called definable set or set in rough approximation space; and if 
R(X) �= R(X), then X is called Pawlak rough set. Obviously, both upper approximation R(X) and lower approximation 
R(X) of a target set X are two sets. Three disjoint regions can be obtained as: Pos(X) = R(X), Neg(X) =∼ R(X) and 
Bn(X) = R(X) − R(X) are called the positive region, negative region, and boundary region of X , respectively.

In Pawlak rough sets, the relationships between equivalence classes and the basic set are strict that there are no fault 
tolerance mechanisms. Quantitative information about the degree of overlap of the equivalence classes and the basic set is 
not taken into consideration. Therefore, neither wider relationships nor quantitative information can be utilized. Naturally 
the study of PRS and GRS regard to relative quantitative information and absolute quantitative information are presented, 
respectively.

Let U be a non-empty and finite set of objects, one can define P as probability measure if the set-valued function P
maps from 2U to [0, 1]. P satisfies the two conditions: P (U ) = 1; if A ∩ B = ∅, then P (A ∪ B) = P (A) + P (B). Then P is 
a probability measure of σ -algebra which is combined by the family subset of U . In the following definition, we introduce 
the notion of the PRS model.

Definition 2.3 (PRS model [58,63,74]). Let I = (U , A, V , f ) be an information system and R be an equivalence relation. Given 
two parameters α, β (0 ≤ β < α ≤ 1), for any X ⊆ U , the upper and lower approximations based on thresholds α, β are 
defined as follows

R(α,β)(X) = {x ∈ U |P (X |[x]R) > β} = ∪{[x]R |P (X |[x]R) > β},
R(α,β)(X) = {x ∈ U |P (X |[x]R) ≥ α} = ∪{[x]R |P (X |[x]R) ≥ α}.

If R(α,β)(X) = R(α,β)(X), then X is a definable set, otherwise X is a PRS. Accordingly, the positive, negative and boundary 
regions of PRS model are

Pos(α,β)(X) = R(α,β)(X);
Neg(α,β)(X) =∼ R(α,β)(X);
Bn(α,β)(X) = R(α,β)(X) − R(α,β)(X).

The acceptance of PRS is merely due to the fact that they are defined by using probabilistic information and are more 
general and flexible [43]. The PRS model uses conditional probability to quantify the degree of set inclusion. The conditional 
probability is calculated by the rough membership function P (X |[x]R) = |[x]R ∩ X |/|[x]R |, which implies the relative quan-
titative information about the degree of overlap between equivalence classes and a basic set. Thresholds imposed on the 
probability are used to define rough set approximations. The threshold values, known as parameters, are applied to a rough 
membership [40] or a rough inclusion [42] to obtain probabilistic or parameterized approximations. In the rough set theory 
literature, the notion of rough inclusion, introduced explicitly by Polkowski and Skowron [41,42], has been studied using 
other names, including relative degree of misclassification [76], majority inclusion relation [76], inclusion degrees [56], and 
so on. Rough inclusion functions are mappings with which one can measure the degree of inclusion of a set in a set [14]. 
As a special case of rough inclusion, the rough membership is calculated from data as the ratio of objects from elementary 
set [x]R that belongs to X .

Yao and Lin explored the relationship between rough sets and modal logics and proposed the GRS model based on 
graded modal logics [62,73]. The GRS is different from the PRS in the description of this quantification.

Definition 2.4 (GRS model [62,73]). Let I = (U , A, V , f ) be an information system and R be an equivalence relation. Suppose 
k is a non-negative integer called “grade”, for any X ⊆ U ,

Rk(X) = {x ∈ U | |[x]R ∩ X | > k} = ∪{[x]R | |[x]R ∩ X | > k},
Rk(X) = {x ∈ U | |[x]R | − |[x]R ∩ X | ≤ k} = ∪{[x]R | |[x]R | − |[x]R ∩ X | ≤ k}

are called grade k upper and lower approximations of X , respectively. If Rk(X) = Rk(X), then X is called a definable set 
by grade k; otherwise, X is called a rough set by grade k. Rk and Rk are called grade k upper and lower approximation 
operators, respectively. If k = 0, then Rk(X) = R(X), Rk(X) = R(X). Therefore, the classical rough set model is a special case 
of the GRS model.
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It should be noted that the upper approximation Rk(X) is the union of the equivalence classes whose number of ele-
ments inside X exceed k; Rk(X) is the union of the equivalence classes whose numbers of elements outside X are at most k. 
GRS model primarily considers the absolute quantitative information regarding the equivalence classes and the basic con-
cept. The regions of the GRS model are extensions of grade approximations. Because the inclusion relation of the grade 
approximation does not hold any longer, positive and negative regions, upper and lower boundary regions are naturally 
proposed. We form the following regions:

Posk(X) = Rk(X) ∩ Rk(X);
Negk(X) =∼ (Rk(X) ∪ Rk(X));
U Bnk(X) = Rk(X) − Rk(X);
LBnk(X) = Rk(X) − Rk(X);
Bnk(X) = U Bnk(X) ∪ LBnk(X),

where Posk(X), Negk(X), U Bnk(X), LBnk(X) and Bnk(X) are called grade k positive region, negative region, upper boundary 
region, lower boundary region, and boundary region of X .

PRS model and GRS model can reflect relative quantitative information and absolute quantitative information about 
the degree of overlap between equivalence classes and a basic concept, respectively. The relative and absolute quantitative 
information are the two distinct objective sides that describe approximate space, and each has its own virtues and pertinent 
application environments.

3. Formation of distance-based fuzzy similarity relation

The classical rough set models can only be used to deal with discrete numerical data in information systems, while 
cannot be used to handle continuous numerical data. In this section, we present a formation of distance-based fuzzy sim-
ilarity relation to tackle categorical data in a numerical information system. The distance-based fuzzy similarity relation 
is established on a basis of a distance matrix, then the distance-based fuzzy similarity classes are obtained based on the 
formed distance-based fuzzy similarity relation. It should be noted that the proposed formation processes of distance-based 
fuzzy similarity relation is also applicable to discrete numerical data. The information systems studied in this paper are all 
numerical information systems.

Definition 3.1. [5] Let I = (U , A, V , f ) be an information system. For xi ∈ U and a j ∈ A, the values of the information system 
are normalized as

f (xi,a j) = υ(xi,a j) − min(υ(xk,a j))

max(υ(xk,a j)) − min(υ(xk,a j))
,

where υ(xi, a j) is the value of xi on a j , max(υ(xk, a j)) is the maximal value on a j , and min(υ(xk, a j)) is the minimal value 
on a j .

After normalizing the information system, we introduce the distance between two objects in an information system in 
the following Definition 3.2. A detailed description on the distance function can be found in [53].

Definition 3.2. [53] Let I = (U , A, V , f ) be an information system. xi and x j are the two objects in U . For a subset B ⊆ A, 
the distance metric dij on B is calculated as

dij = (

m∑
k=1

| f (xi,ak) − f (x j,ak)|p)1/p,

where f (xi, ak) is the value of xi on ak and m = |B|. The variable values of the parameter p represent different kinds of 
distances. If p = 1, it is a Manhattan distance; if p = 2, it is an Euclidean distance; if p = ∞, it is a Chebychev distance.

Definition 3.3. Let I = (U , A, V , f ) be an information system and B ⊆ A. A distance matrix of B is defined by

D(B) =

⎛
⎜⎜⎜⎝

d11 d12 · · · d1n

d21 d22 · · · d2n
...

... dij
...

dn1 dn2 · · · dnn

⎞
⎟⎟⎟⎠ ,

where dij ∈ [0, 1] is the distance between two objects xi and x j on B .
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The above obtained distance matrix describes how far they are between two objects in an information system. The 
following Definition 3.4 is about the comparison between two distance matrices.

Definition 3.4. Let I = (U , A, V , f ) be an information system and B, C ⊆ A. D(B) and D(C) are two distance matrices on 
B and C . bij and ci j are elements of D(B) and D(C), respectively. ∀i, j ∈ {1, 2, · · · , n}, if bij ≤ ci j , then the distance matrix 
D(B) is not larger than D(C), denoted as D(B) ≤ D(C).

Theorem 3.1. Let I = (U , A, V , f ) be an information system and B, C ⊆ A. D(B) and D(C) are two distance matrices on B and C. If 
B ⊆ C , then D(B) ≤ D(C).

Proof. Suppose |B| = m and |C | = n. Because B ⊆ C , then we can get that m ≤ n. By Definition 3.2, we obtain bij =
(

m∑
k=1

| f (xi, ak) − f (x j, ak)|p)1/p and ci j = (
n∑

k=1
| f (xi, ak) − f (x j, ak)|p)1/p . That is to say bij ≤ ci j . Then we have D(B) ≤

D(C). �
It can be seen from the above Theorem 3.1 that if the two attribute subsets satisfy B ⊆ C , then Theorem 3.1 provides a 

basic judgment method for comparing the two distance matrices D(B) and D(C), which is D(B) ≤ D(C).

Definition 3.5. Let I = (U , A, V , f ) be an information system and B ⊆ A. D(A) and D(B) are two distance matrices on A
and B . The D ′(B) is normalized as

D ′(B) = D(B)

max(D(A))
,

the max(D(A)) represents for the maximal value of elements of distance matrix D(A).

Definition 3.6. Let I = (U , A, V , f ) be an information system and a subset B ⊆ A. Suppose D ′(B) is a normalized distance 
matrix on B . The element dij of D ′(B) is the distance between two objects xi and x j on B . Then B̃ is a distance-based fuzzy 
similarity relation on B , denoted by the distance-based fuzzy similarity relation matrix S(B̃) as follows.

S(B̃) =

⎛
⎜⎜⎜⎝

s11 s12 · · · s1n

s21 s22 · · · s2n
...

... si j
...

sn1 sn2 · · · snn

⎞
⎟⎟⎟⎠ ,

where 0 ≤ si j = 1 − dij ≤ 1 is the similarity value obtained between two objects xi and x j on attribute set B .

We can see that the distance-based fuzzy similarity relation matrix is derived from a distance matrix by the formula 
S(B̃) = 1 − D ′(B). The distance-based fuzzy similarity relation matrix represents how similar they are between two objects. 
It shows the similarity relation between the two objects. It is easy to see that B̃ is a fuzzy similarity relation, which means 
∀x, y ∈ U , B̃ satisfies the following two properties,

(1) Reflexivity: B̃(x, x) = 1.
(2) Symmetry: B̃(x, y) = B̃(y, x).

Theorem 3.2. Let I = (U , A, V , f ) be an information system and B, C ⊆ A. The ̃B, ̃C are two distance-based fuzzy similarity relations 
on B, C. If B ⊆ C , then ̃B ⊇ C̃ .

Proof. Since B ⊆ C , according to Theorem 3.1, we can obtain D(B) ≤ D(C). By Definition 3.6, we know S(B̃) ≥ S(C̃), then 
B̃(x, y) ≥ C̃(x, y). Therefore, B̃ ⊇ C̃ . �

Given two distance-based fuzzy similarity relations B̃ and ̃C , the complement, intersection, union and inclusion operators 
are defined as follows.

(1) Complement: Ẽ =∼ B̃ ⇔ Ẽ(x, y) = 1 − B̃(x, y).

(2) Intersection: Ẽ = B̃ ∩ C̃ ⇔ Ẽ(x, y) = min{B̃(x, y), ̃C(x, y)}.

(3) Union: Ẽ = B̃ ∪ C̃ ⇔ Ẽ(x, y) = max{B̃(x, y), ̃C(x, y)}.

(4) Inclusion: B̃ ⊆ C̃ ⇔ B̃(x, y) ≤ C̃(x, y).
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Table 3.1
An information system.

U a b c d e

x1 0.54 0.21 0.64 0.13 0.38
x2 0.06 0.63 0.73 0.62 0.43
x3 0.38 0.44 0.51 0.74 0.67
x4 0.58 0.57 0.73 0.37 0.07
x5 0.58 0.58 0.34 0.71 0.73
x6 0.56 0.56 0.87 0.60 0.68
x7 0.21 0.51 0.31 0.45 0.29
x8 0.51 0.48 0.84 0.48 0.91

Table 3.2
The normalized information system.

U a b c d e

x1 0.92 0.00 0.59 0.00 0.37
x2 0.00 1.00 0.75 0.80 0.43
x3 0.62 0.55 0.36 1.00 0.71
x4 1.00 0.86 0.75 0.39 0.00
x5 1.00 0.88 0.05 0.95 0.79
x6 0.96 0.83 1.00 0.77 0.73
x7 0.29 0.71 0.00 0.52 0.26
x8 0.87 0.64 0.95 0.57 1.00

Being different distance-based fuzzy similarity relation may be formed by different distance metrics of objects introduced 
in Definition 3.2. It can be easily verified that these operators satisfy the following properties

(1) B̃ ∩ C̃ = C̃ ∩ B̃, ̃B ∪ C̃ = C̃ ∪ B̃;

(2) (B̃ ∩ C̃) ∩ Ẽ = B̃ ∩ (C̃ ∩ Ẽ), (B̃ ∪ C̃) ∪ Ẽ = B̃ ∪ (C̃ ∪ Ẽ);

(3) ∼ (B̃ ∩ C̃) =∼ B̃∪ ∼ C̃, ∼ (B̃ ∪ C̃) =∼ B̃∩ ∼ C̃ ;

(4) ∼ (∼ B̃) = B̃ .

Different from the equivalence relation of generating a partition of the domain on an information system, a similarity 
relation induces intersecting blocks, which constitute a covering of the domain. Correspondingly, a distance-based fuzzy 
similarity relation induces a fuzzy covering of the domain and some fuzzy similarity classes. The distance-based fuzzy 
similarity classes are also called distance-based fuzzy similarity granules.

Definition 3.7. Let I = (U , A, V , f ) be an information system, B ⊆ A. The B̃ is a distance-based fuzzy similarity relation 
on B . A fuzzy cover of the domain induced by a distance-based fuzzy similarity relation is defined by

U

B̃
= {[xi]B̃}n

i=1,

where [xi]B̃ = {si1/x1 + si2/x2 + · · · + sin/xn}. [xi]B̃ is the distance-based fuzzy similarity class belonging to xi . si j is a 
similarity value between xi and x j . The symbol “+” denotes a union of elements. The cardinality of a distance-based fuzzy 
similarity granule [xi]B̃ is defined as

|[xi]B̃ | =
n∑

j=1

si j .

The above process provides us with a visible way to form the distance-based fuzzy similarity relation and the corre-
sponding distance-based fuzzy similarity classes (granules). Here we present an example to introduce and interpret the 
above processes.

Example 3.1. Table 3.1 is an information system from the reference [5], where the object set U = {x1, x2, x3, x4, x5, x6, x7, x8}
and the attribute set A = {a, b, c, d, e}. Table 3.2 is a normalized information system from Table 3.1.

Table 3.2 presents a normalized information system resulting from the initial information system by using the method 
outlined in Definition 3.1.

We use the Euclidean distance to granulate objects in the normalized information system. Two distance matrices of the 
attribute sets A1 = {a, b, c} and A = {a, b, c, d, e} are formed as
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D(A1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.00 1.37 0.67 0.88 1.03 0.93 1.12 0.74
1.37 0.00 0.86 1.01 1.22 1.01 0.85 0.96
0.67 0.86 0.00 0.63 0.59 0.78 0.51 0.65
0.88 1.01 0.63 0.00 0.70 0.25 1.04 0.32
1.03 1.22 0.59 0.70 0.00 0.95 0.73 0.93
0.93 1.01 0.78 0.25 0.95 0.00 1.21 0.22
1.12 0.85 0.51 1.04 0.73 1.21 0.00 1.11
0.74 0.96 0.65 0.32 0.93 0.22 1.11 0.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.00 1.59 1.25 1.03 1.47 1.26 1.24 1.13
1.59 0.00 0.93 1.17 1.28 1.05 0.91 1.14
1.25 0.93 0.00 1.13 0.60 0.82 0.83 0.83
1.03 1.17 1.13 0.00 1.19 0.86 1.08 1.07
1.47 1.28 0.60 1.19 0.00 0.97 1.00 1.03
1.26 1.05 0.82 0.86 0.97 0.00 1.32 0.40
1.24 0.91 0.83 1.08 1.00 1.32 0.00 1.33
1.13 1.14 0.83 1.07 1.03 0.40 1.33 0.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can easily obtain that max(D(A)) = 1.59, from Definition 3.5, the above two distance matrices D(A1) and D(A) are 
normalized as follows.

D ′(A1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.00 0.86 0.42 0.55 0.65 0.59 0.71 0.46
0.86 0.00 0.54 0.64 0.77 0.63 0.54 0.60
0.42 0.54 0.00 0.40 0.37 0.49 0.32 0.41
0.55 0.64 0.40 0.00 0.44 0.16 0.66 0.20
0.65 0.77 0.37 0.44 0.00 0.60 0.46 0.59
0.59 0.63 0.49 0.16 0.60 0.00 0.76 0.14
0.71 0.54 0.32 0.66 0.46 0.76 0.00 0.70
0.46 0.60 0.41 0.20 0.59 0.14 0.70 0.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D ′(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.00 1.00 0.79 0.65 0.92 0.79 0.78 0.71
1.00 0.00 0.58 0.74 0.81 0.66 0.57 0.72
0.79 0.58 0.00 0.71 0.38 0.51 0.52 0.53
0.65 0.74 0.71 0.00 0.75 0.54 0.68 0.67
0.92 0.81 0.38 0.75 0.00 0.61 0.63 0.65
0.79 0.66 0.51 0.54 0.61 0.00 0.83 0.25
0.78 0.57 0.52 0.68 0.63 0.83 0.00 0.84
0.71 0.72 0.52 0.67 0.65 0.25 0.84 0.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Based on the formation of distance-based fuzzy similarity relation matrix in Definition 3.6, we construct distance-based 
fuzzy similarity relation matrices as follows.

S( Ã1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.14 0.58 0.45 0.35 0.42 0.29 0.54
0.14 1.00 0.46 0.36 0.23 0.37 0.46 0.40
0.58 0.46 1.00 0.60 0.63 0.51 0.68 0.59
0.45 0.36 0.60 1.00 0.56 0.84 0.34 0.80
0.35 0.23 0.63 0.56 1.00 0.40 0.54 0.41
0.42 0.37 0.51 0.84 0.40 1.00 0.24 0.86
0.29 0.46 0.68 0.34 0.54 0.24 1.00 0.30
0.54 0.40 0.59 0.80 0.41 0.86 0.30 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S( Ã) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.00 0.21 0.35 0.08 0.21 0.22 0.29
0.00 1.00 0.42 0.26 0.19 0.34 0.43 0.28
0.21 0.42 1.00 0.29 0.62 0.49 0.48 0.48
0.35 0.26 0.29 1.00 0.25 0.46 0.32 0.33
0.08 0.19 0.62 0.25 1.00 0.39 0.37 0.35
0.21 0.34 0.49 0.46 0.39 1.00 0.17 0.75
0.22 0.43 0.48 0.32 0.37 0.17 1.00 0.16
0.29 0.28 0.48 0.33 0.35 0.75 0.16 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, the distance-based fuzzy similarity classes with regard to the distance-based fuzzy similarity relation Ã are listed 
as follows.
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[x1] Ã = { 1

x1
+ 0

x2
+ 0.21

x3
+ 0.35

x4
+ 0.08

x5
+ 0.21

x6
+ 0.22

x7
+ 0.29

x8
},

[x2] Ã = { 0

x1
+ 1

x2
+ 0.42

x3
+ 0.26

x4
+ 0.19

x5
+ 0.34

x6
+ 0.43

x7
+ 0.28

x8
},

[x3] Ã = {0.21

x1
+ 0.42

x2
+ 1

x3
+ 0.29

x4
+ 0.62

x5
+ 0.49

x6
+ 0.48

x7
+ 0.48

x8
},

[x4] Ã = {0.35

x1
+ 0.26

x2
+ 0.29

x3
+ 1

x4
+ 0.25

x5
+ 0.46

x6
+ 0.32

x7
+ 0.33

x8
},

[x5] Ã = {0.08

x1
+ 0.19

x2
+ 0.62

x3
+ 0.25

x4
+ 1

x5
+ 0.39

x6
+ 0.37

x7
+ 0.35

x8
},

[x6] Ã = {0.21

x1
+ 0.34

x2
+ 0.49

x3
+ 0.46

x4
+ 0.39

x5
+ 1

x6
+ 0.17

x7
+ 0.75

x8
},

[x7] Ã = {0.22

x1
+ 0.43

x2
+ 0.48

x3
+ 0.32

x4
+ 0.37

x5
+ 0.17

x6
+ 1

x7
+ 0.16

x8
},

[x8] Ã = {0.29

x1
+ 0.28

x2
+ 0.48

x3
+ 0.33

x4
+ 0.35

x5
+ 0.75

x6
+ 0.16

x7
+ 1

x8
}.

After discussing the distance-based fuzzy similarity classes, it is important to introduce the following operators between 
these distance-based fuzzy similarity classes.

Definition 3.8. Given two distance-based fuzzy similarity classes [xi ] Ã and [xi]B̃ . The complement, intersection, union and 
inclusion operations between these classes are defined as

• ∼ [xi] Ã = {(1 − ai1)/x1 + (1 − ai2)/x2 + · · · + (1 − ain)/xn} =
n∑

j=1

1−aij
x j

,

• [xi] Ã ∩ [xi]B̃ = {min(ai1, bi1)/x1 + min(ai2, bi2)/x2 + · · · + min(ain, bin)/xn} =
n∑

j=1

aij∧bij
x j

,

• [xi] Ã ∪ [xi]B̃ = {max(ai1, bi1)/x1 + max(ai2, bi2)/x2 + · · · + max(ain, bin)/xn} =
n∑

j=1

aij∨bij
x j

,

• [xi] Ã ⊆ [xi]B̃ ⇔ ∀ j ∈ {1, 2, · · · , n}, aij ≤ bij ⇔
n∑

j=1

aij
x j

≤
n∑

j=1

bij
x j

,

where aij is the similarity value between xi and x j on Ã, bij is the similarity value between xi and x j on B̃ .

In an information system I = (U , A, V , f ), for two subsets B, C ⊆ A, U
B̃

and U
C̃

are two fuzzy covers of the domain 
induced by on B̃ and C̃ , respectively.

Definition 3.9. We say that U
B̃

is thinner than U
C̃

if it satisfies the following partial order

U

B̃
� U

C̃
⇔ ∀ [xi]B̃ ∈ U

B̃
, ∃ [xi]C̃ ∈ U

C̃
s.t. [xi]B̃ ⊆ [xi]C̃ .

Theorem 3.3. Let I = (U , A, V , f ) be an information system. For two distance-based subsets B, C ⊆ A, ̃B, ̃C be two fuzzy similarity 
relations on B, C , respectively, then we have

C ⊆ B ⇒ U

B̃
� U

C̃
.

Proof. From Theorem 3.2, we obtain ̃B ⊆ C̃ , which means for each i and j, bij ≤ ci j . From Definition 3.8, we get [xi]B̃ ⊆ [xi]C̃ . 
That is to say U

B̃
� U

C̃
. �

To form the distance-based fuzzy similarity relation discussed in this section, we need to normalize the information 
system and then define the normalized distance matrix in the normalized information system. For simplicity and without 
loss of generality, we suppose all the values of the following discussed information systems and all the distance matrices 
are normalized.
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4. Distance-based double-quantitative approximation spaces with logic operations

We present the formation of distance-based fuzzy similarity relation in the previous section, and also provide the 
distance-based fuzzy similarity classes based on the proposed distance-based fuzzy similarity relation. In this section, we 
investigate two kinds of Db-Sq-RFS (distance-based single-quantitative rough fuzzy set) models and four kinds of Db-Dq-RFS 
models (distance-based double-quantitative rough fuzzy set) with logic operation.

4.1. Db-Sq-RFS model

The Db-Sq-RFS model contains two models, which are distance-based probabilistic rough fuzzy set (Db-PRFS) and 
distance-based graded rough fuzzy set (Db-GRFS). The Db-PRFS model considers the relative quantitative information in 
their upper approximation and lower approximation, and the Db-GRFS model considers the absolute quantitative informa-
tion in their upper and lower approximations.

Definition 4.1 (Db-PRFS). Given an information system I = (U , A, V , f ), for a subset R ⊆ A, the R̃ is a distance-based fuzzy 
similarity relation on R . For any X̃ ∈F(U ) and 0 ≤ β < α ≤ 1. The distance-based probabilistic upper and lower approxima-
tion operators are defined as follows.

R̃(α,β)( X̃) = {x ∈ U | |[x]R̃ ∩ X̃ |
|[x]R̃ | > β},

R̃(α,β)( X̃) = {x ∈ U | |[x]R̃ ∩ X̃ |
|[x]R̃ | ≥ α}.

Based on the distance-based probabilistic upper and lower approximation operators, we determine a rough set model 
called the Db-PRFS model, which is denoted by (U , ̃R(α,β)( X̃), ̃R(α,β)( X̃)). Accordingly, the positive, negative and boundary 
regions of Db-PRFS model are

Pos(α,β)( X̃) = R̃(α,β)( X̃);
Neg(α,β)( X̃) =∼ R̃(α,β)( X̃);
Bn(α,β)( X̃) = R̃(α,β)( X̃) − R̃(α,β)( X̃).

Example 4.1 (Continuation of Example 3.1). In order to make the presented model more comprehensible, we give a real world 
application background to Table 3.1, where U is a universe which consists of 8 patients with the clinical features degree; 
the attributes a, b, c, d, and e are Cough, Rhinorrhoea, Myodynia, Diarrhea and Nausea, respectively. Consider a fuzzy set 
X̃ = {0.30/x1 + 0.30/x2 + 0.10/x3 + 0.50/x4 + 0.00/x5 + 0.20/x6 + 0.30/x7 + 0.30/x8}, which represents the initial diagnosis 
of each patient suffering from a cold. The two parameters are set as α = 0.60, β = 0.45. For the attribute set R , we get

|[x1]R̃ ∩ X̃ | = 0.30 + 0.00 + 0.10 + 0.35 + 0.00 + 0.20 + 0.22 + 0.29 = 1.36,

|[x2]R̃ ∩ X̃ | = 0.00 + 0.30 + 0.10 + 0.26 + 0.00 + 0.20 + 0.30 + 0.28 = 1.44,

|[x3]R̃ ∩ X̃ | = 0.21 + 0.30 + 0.10 + 0.29 + 0.00 + 0.20 + 0.30 + 0.30 = 1.70,

|[x4]R̃ ∩ X̃ | = 0.30 + 0.26 + 0.10 + 0.50 + 0.00 + 0.20 + 0.30 + 0.30 = 1.96,

|[x5]R̃ ∩ X̃ | = 0.08 + 0.19 + 0.10 + 0.25 + 0.00 + 0.20 + 0.30 + 0.30 = 1.42,

|[x6]R̃ ∩ X̃ | = 0.21 + 0.30 + 0.10 + 0.46 + 0.00 + 0.20 + 0.17 + 0.30 = 1.74,

|[x7]R̃ ∩ X̃ | = 0.22 + 0.30 + 0.10 + 0.32 + 0.00 + 0.17 + 0.30 + 0.16 = 1.57,

|[x8]R̃ ∩ X̃ | = 0.29 + 0.28 + 0.10 + 0.33 + 0.00 + 0.20 + 0.16 + 0.30 = 1.66,

and

|[x1]R̃ | = 2.36, |[x2]R̃ | = 2.92, |[x3]R̃ | = 3.99, |[x4]R̃ | = 3.26,

|[x5]R̃ | = 3.25, |[x6]R̃ | = 3.81, |[x7]R̃ | = 3.15, |[x8]R̃ | = 3.64.

Then the conditional probabilities of each object are calculated as

|[x1]R̃ ∩ X̃ |
|[x ] | = 1.46

2.36
= 0.617,

|[x2]R̃ ∩ X̃ |
|[x ] | = 1.44

2.92
= 0.493,
1 R̃ 2 R̃
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|[x3]R̃ ∩ X̃ |
|[x3]R̃ | = 1.70

3.99
= 0.426,

|[x4]R̃ ∩ X̃ |
|[x4]R̃ | = 1.96

3.26
= 0.601,

|[x5]R̃ ∩ X̃ |
|[x5]R̃ | = 1.42

3.25
= 0.437,

|[x6]R̃ ∩ X̃ |
|[x6]R̃ | = 1.74

3.81
= 0.457,

|[x7]R̃ ∩ X̃ |
|[x7]R̃ | = 1.57

3.15
= 0.498,

|[x8]R̃ ∩ X̃ |
|[x8]R̃ | = 1.66

3.64
= 0.456.

From Definition 4.1, the distance-based probabilistic upper approximation and lower approximation are calculated as 
follows.

R̃(α,β)( X̃) = {x1, x2, x4, x6, x7, x8},
R̃(α,β)( X̃) = {x1, x4}.

The corresponding three disjoint regions of Db-PRFS model are obtained as

Pos(α,β)( X̃) = {x1, x4};
Neg(α,β)( X̃) = {x3, x5};
Bn(α,β)( X̃) = {x2, x6, x7, x8}.

The patients x1 and x4 belong to the positive region meaning that these two patients really need to receive treatment; x3
and x5 belong to the negative region means that they need not to get treatments; x2, x6, x7, and x8 belong to the boundary 
region means that they need further observations to make the decision.

Definition 4.2 (Db-GRFS). Given an information system I = (U , A, V , f ), for a subset R ⊆ A, the R̃ is a distance-based fuzzy 
similarity relation on R . For any X̃ ∈ F(U ), k ∈ R and 0 ≤ k ≤ |U |, where R is a real number. The distance-based graded 
upper and lower approximation operators are defined as follows.

R̃k( X̃) = {x ∈ U ||[x]R̃ ∩ X̃ | > k},
R̃k( X̃) = {x ∈ U ||[x]R̃ | − |[x]R̃ ∩ X̃ | ≤ k}.

If R̃k( X̃) = R̃k( X̃), then X̃ is called a distance-based definable fuzzy set by grade k; otherwise, X̃ is called a distance-

based rough fuzzy set by grade k. R̃k and R̃k are called distance-based grade k upper and lower approximation operators, 
respectively. Accordingly the positive region, negative region, upper boundary region, lower boundary region and boundary 
region of Db-GRFS are

Posk( X̃) = R̃k( X̃) ∩ R̃k( X̃);
Negk( X̃) =∼ (R̃k( X̃) ∪ R̃k( X̃));
U Bnk( X̃) = R̃k( X̃) − R̃k( X̃);
LBnk( X̃) = R̃k( X̃) − R̃k( X̃);
Bnk( X̃) = U Bnk( X̃) ∪ LBnk( X̃).

It should be noted that k ∈ R is different from the ones encountered in the previous works [11,26,54,68–73], where k
satisfies the condition k ∈ N.

Example 4.2 (Continuation of Examples 3.1 and 4.1). Consider grade k = 1.6; we obtain

|[x1]R̃ | − |[x1]R̃ ∩ X̃ | = 1.00, |[x2]R̃ | − |[x2]R̃ ∩ X̃ | = 1.48,

|[x3]R̃ | − |[x3]R̃ ∩ X̃ | = 2.27, |[x4]R̃ | − |[x4]R̃ ∩ X̃ | = 1.30,

|[x5]R̃ | − |[x5]R̃ ∩ X̃ | = 1.83, |[x6]R̃ | − |[x6]R̃ ∩ X̃ | = 2.07,

|[x7]R̃ | − |[x7]R̃ ∩ X̃ | = 1.58, |[x8]R̃ | − |[x8]R̃ ∩ X̃ | = 1.98.

Then the distance-based graded upper approximation and lower approximation are calculated as

R̃k( X̃) = {x3, x4, x6, x8},
R̃ ( X̃) = {x , x , x , x }.
k 1 2 4 7
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Table 4.1
Distance-based double-quantitative approximations of fuzzy set with logic operations.

Model Double quantification

I R̃
∧
(α,β,k)

( X̃) R̃
∧
(α,β,k)

( X̃)

II R̃
∧
(α,β,k)

( X̃) R̃
∨
(α,β,k)

( X̃)

III R̃
∨
(α,β,k)

( X̃) R̃
∨
(α,β,k)

( X̃)

IV R̃
∨
(α,β,k)

( X̃) R̃
∧
(α,β,k)

( X̃)

The above two distance-based graded upper and lower approximations are obtained directly according to Definition 4.2. 
For any xi ∈ U , if the cardinality of [xi]R̃ ∩ X̃ is greater than grade k, then xi belongs to distance-based graded upper 
approximation; if |[xi]R̃ | − |[xi]R̃ ∩ X̃| is no more than k, then xi belongs to the distance-based graded lower approximation. 
It should be noted that there may exist different objects belong to these distance-based graded upper approximation and 
lower approximation, respectively. In Example 4.2, the objects x3, x6 and x8 belong to R̃k( X̃), but do not belong to R̃k( X̃); 
and x1, x2 and x7 belong to R̃k( X̃), but do not belong to R̃k( X̃). This leads to the circumstance that there is no inclusion 
relation between distance-based graded upper approximation and distance-based graded lower approximation.

The corresponding three disjoint regions of Db-GRFS model are obtained in the form.

Posk( X̃) = {x4};
Negk( X̃) = {x5};
U Bnk( X̃) = {x3, x6, x8};
LBnk( X̃) = {x1, x2, x7}.

The patient x4 belongs to the positive region means that x4 really needs to receive treatment; x5 belongs to the negative 
region means that he (or she) does not need to get treatments; x3, x6 and x8 belong to the upper boundary region means 
that although they need to be observed to make decisions about whether they need to get treatment, they are more likely 
not to receive treatment; x1, x2 and x7 belong to the lower boundary region means that although they need to be observed 
to make decisions about whether they need to get treatment, they are more likely to receive treatment.

4.2. Db-Dq-RFS model

When we consider both relative quantitative information and absolute quantitative information in the upper and lower 
approximations, we obtain four kinds of distance-based double-quantitative rough approximation operators.

Suppose I = (U , A, V , f ) is an information system, R ⊆ A. For any X̃ ∈ F(U ), 0 ≤ β < α ≤ 1, k ∈ R, 0 ≤ k ≤ |U |, and 
x ∈ U . When we consider relative quantitative information and absolute quantitative information in the upper and lower 
approximations at the same time, there are four cases, which can be shown as follows.

(1) Double-quantitative upper approximation with logic conjunction.
(2) Double-quantitative upper approximation with logic disjunction.
(3) Double-quantitative lower approximation with logic conjunction.
(4) Double-quantitative lower approximation with logic disjunction.

We obtain four kinds of Db-Dq-RFS models by combining the above four cases, where the forms of combination are 
shown in Table 4.1.

In what follows, we investigate four kinds of distance-based double-quantitative approximations of fuzzy set with logic 
operations. These four models have their own specific application background, and we should decide which model to use 
according to the actual application requirements.

If the upper approximation must contain two kinds of quantitative information, and the lower approximation must also 
contain two kinds of quantitative information, the following model in Definition 4.3 can be applied.

Definition 4.3. Suppose I = (U , A, V , f ) is an information system, R ⊆ A. For any X̃ ∈ F(U ), 0 ≤ β < α ≤ 1, k ∈ R, 0 ≤ k ≤
|U | and x ∈ U . The first kind of distance-based double-quantitative rough fuzzy set (Db-DqI-RFS) model is denoted as

R̃
∧
(α,β,k)

( X̃) = {x ∈ U | |[x]R̃ ∩ X̃ |
|[x]R̃ | > β ∧ |[x]R̃ ∩ X̃ | > k},

R̃
∧
(α,β,k)

( X̃) = {x ∈ U | |[x]R̃ ∩ X̃ |
|[x] | ≥ α ∧ (|[x]R̃ | − |[x]R̃ ∩ X̃ |) ≤ k}.
R̃
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Based on these two operators, we determine the Db-DqI-RFS model, which is also denoted by (U , ̃R
∧
(α,β,k)

( X̃),

R̃
∧
(α,β,k)

( X̃)).

In Db-DqI-RFS model, the conjunction operator is applied to reflect both the relative quantitative information and abso-
lute quantitative information in upper and lower approximations. Each element, in the upper approximation and the lower 
approximation, exhibits both relative quantification and absolute quantification at the same time with the conjunction op-
erator.

Theorem 4.1. Db-DqI-RFS can be also defined as

R̃
∧
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩ X̃ | > max(β · |[x]R̃ |,k)},
R̃

∧
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩ X̃ | ≥ max(α · |[x]R̃ |, |[x]R̃ | − k)}.

Proof. For the upper approximation, |[x]R̃ ∩ X̃ |
|[x]R̃ | > β ∧ |[x]R̃ ∩ X̃| > k ⇔ |[x]R̃ ∩ X̃| > β · |[x]R̃ | ∧ |[x]R̃ ∩ X̃ | > k ⇔ |[x]R̃ ∩ X̃ | >

max(β · |[x]R̃ |, k). For the lower approximation, |[x]R̃ ∩ X̃ |
|[x]R̃ | ≥ α ∧ (|[x]R̃ | − |[x]R̃ ∩ X̃|) ≤ k ⇔ |[x]R̃ ∩ X̃| ≥ α · |[x]R̃ | ∧ |[x]R̃ ∩ X̃ | ≥

(|[x]R̃ | − k) ⇔ |[x]R̃ ∩ X̃| ≥ max(α · |[x]R̃ |, |[x]R̃ | − k). �
From the Definition 4.3 about the upper approximation and lower approximation in Db-DqI-RFS model, we obtain 

R̃
∧
(α,β,k)

( X̃) = R̃(α,β)( X̃) ∩ R̃k( X̃) and R̃
∧
(α,β,k)

( X̃) = R̃(α,β)( X̃) ∩ R̃k( X̃).

The positive region, negative region, upper boundary region, lower boundary region are given as

PosI
(α,β,k)( X̃) = R̃

∧
(α,β,k)

( X̃) ∩ R̃
∧
(α,β,k)

( X̃);

NegI
(α,β,k)( X̃) =∼ (R̃

∧
(α,β,k)

( X̃) ∪ R̃
∧
(α,β,k)

( X̃));

U BnI
(α,β,k)( X̃) = R̃

∧
(α,β,k)

( X̃) − R̃
∧
(α,β,k)

( X̃);

LBnI
(α,β,k)( X̃) = R̃

∧
(α,β,k)

( X̃) − R̃
∧
(α,β,k)

( X̃).

The boundary region is the union of upper boundary region and lower boundary region, which means BnI
(α,β,k)

( X̃) =
U BnI

(α,β,k)
( X̃) ∪ LBnI

(α,β,k)
( X̃).

If the upper approximation must contain two kinds of quantitative information, and the lower approximation contains 
at least one kind of quantitative information, the following model in Definition 4.4 can be applied.

Definition 4.4. Suppose I = (U , A, V , f ) is an information system, R ⊆ A. For any X̃ ∈ F(U ), 0 ≤ β < α ≤ 1, k ∈ R, 0 ≤ k ≤
|U | and x ∈ U . The second kind of distance-based double-quantitative rough fuzzy set (Db-DqII-RFS) model is denoted as

R̃
∧
(α,β,k)

( X̃) = {x ∈ U | |[x]R̃ ∩ X̃ |
|[x]R̃ | > β ∧ |[x]R̃ ∩ X̃ | > k},

R̃
∨
(α,β,k)

( X̃) = {x ∈ U | |[x]R̃ ∩ X̃ |
|[x]R̃ | ≥ α ∨ (|[x]R̃ | − |[x]R̃ ∩ X̃ |) ≤ k}.

Based on these two operators, we can determine the Db-DqII-RFS model, which is also denoted by (U , ̃R
∧
(α,β,k)

( X̃),

R̃
∨
(α,β,k)

( X̃)).

In Db-DqII-RFS model, the conjunction operator is applied to reflect the relative quantitative information and absolute 
quantitative information in upper approximation, and the disjunction operator is applied to reflect the relative quantitative 
information and absolute quantitative information in lower approximation. Each element, in upper approximation, exhibits 
both relative quantification and absolute quantification at the same time with the conjunction operator; as to each element 
in lower approximation, it contains relative quantification or absolute quantification with the disjunction operator.
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Theorem 4.2. Db-DqII-RFS can be also defined as

R̃
∧
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩ X̃ | > max(β · |[x]R̃ |,k)},
R̃

∨
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩ X̃ | ≥ min(α · |[x]R̃ |, |[x]R̃ | − k)}.

Proof. The proof of upper approximation is the same to the proof in Theorem 4.1. As to the proof of lower approxima-

tion, |[x]R̃ ∩ X̃ |
|[x]R̃ | ≥ α ∨ (|[x]R̃ | − |[x]R̃ ∩ X̃ |) ≤ k ⇔ |[x]R̃ ∩ X̃ | ≥ α · |[x]R̃ | ∨ |[x]R̃ ∩ X̃| ≥ (|[x]R̃ | − k) ⇔ |[x]R̃ ∩ X̃ | ≥ min(α · |[x]R̃ |,

|[x]R̃ | − k). �
From Definition 4.4 dealing with the upper approximation and lower approximation in Db-DqII-RFS model, we obtain 

R̃
∧
(α,β,k)

( X̃) = R̃(α,β)( X̃) ∩ R̃k( X̃) and R̃
∨
(α,β,k)

( X̃) = R̃(α,β)( X̃) ∪ R̃k( X̃).

The positive region, negative region, upper boundary region, lower boundary region are presented as follows.

PosI I
(α,β,k)( X̃) = R̃

∧
(α,β,k)

( X̃) ∩ R̃
∨
(α,β,k)

( X̃);

NegI I
(α,β,k)( X̃) =∼ (R̃

∧
(α,β,k)

( X̃) ∪ R̃
∨
(α,β,k)

( X̃));

U BnI I
(α,β,k)( X̃) = R̃

∧
(α,β,k)

( X̃) − R̃
∨
(α,β,k)

( X̃);

LBnI I
(α,β,k)( X̃) = R̃

∨
(α,β,k)

( X̃) − R̃
∧
(α,β,k)

( X̃).

The boundary region is the union of upper boundary region and lower boundary region, which means BnI I
(α,β,k)

( X̃) =
U BnI I

(α,β,k)
( X̃) ∪ LBnI I

(α,β,k)
( X̃).

If the upper approximation contains at least one kind of quantitative information, and the lower approximation also 
contains at least one kind of quantitative information, the following model in Definition 4.5 can be applied.

Definition 4.5. Suppose I = (U , A, V , f ) is an information system, R ⊆ A. For any X̃ ∈ F(U ), 0 ≤ β < α ≤ 1, k ∈ R, 0 ≤ k ≤
|U | and x ∈ U . The third kind of distance-based double-quantitative rough fuzzy set (Db-DqIII-RFS) model is denoted as

R̃
∨
(α,β,k)

( X̃) = {x ∈ U | |[x]R̃ ∩ X̃ |
|[x]R̃ | > β ∨ |[x]R̃ ∩ X̃ | > k},

R̃
∨
(α,β,k)

( X̃) = {x ∈ U | |[x]R̃ ∩ X̃ |
|[x]R̃ | ≥ α ∨ (|[x]R̃ | − |[x]R̃ ∩ X̃ |) ≤ k}.

Based on these two operators, we can determine the Db-DqIII-RFS model, which is also denoted by (U , ̃R
∨
(α,β,k)

( X̃),

R̃
∨
(α,β,k)

( X̃)).

In Db-DqIII-RFS model, the disjunction operator is applied to reflect the relative quantitative information and absolute 
quantitative information in upper and lower approximations. With the disjunction operator, the elements in upper approxi-
mation and lower approximation exhibit relative quantification or absolute quantification at the same time.

Theorem 4.3. Db-DqIII-RFS can be also defined as

R̃
∨
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩ X̃ | > min(β · |[x]R̃ |,k)},
R̃

∨
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩ X̃ | ≥ min(α · |[x]R̃ |, |[x]R̃ | − k)}.

Proof. For the upper approximation, |[x]R̃ ∩ X̃ |
|[x]R̃ | > β ∨ |[x]R̃ ∩ X̃| > k ⇔ |[x]R̃ ∩ X̃| > β · |[x]R̃ | ∨ |[x]R̃ ∩ X̃| > k ⇔ |[x]R̃ ∩ X̃ | >

min(β · |[x]R̃ |, k). The proof of lower approximation is the same to the proof in Theorem 4.2. �
From the Definition 4.5 about the upper approximation and lower approximation in Db-DqIII-RFS model, we obtain 

R̃
∨
(α,β,k)

( X̃) = R̃(α,β)( X̃) ∪ R̃k( X̃) and R̃
∨
(α,β,k)

( X̃) = R̃(α,β)( X̃) ∪ R̃k( X̃).
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The positive region, negative region, upper boundary region, lower boundary region are presented as follows.

PosI I I
(α,β,k)( X̃) = R̃

∨
(α,β,k)

( X̃) ∩ R̃
∨
(α,β,k)

( X̃);

NegI I I
(α,β,k)( X̃) =∼ (R̃

∨
(α,β,k)

( X̃) ∪ R̃
∨
(α,β,k)

( X̃));

U BnI I I
(α,β,k)( X̃) = R̃

∨
(α,β,k)

( X̃) − R̃
∨
(α,β,k)

( X̃);

LBnI I I
(α,β,k)( X̃) = R̃

∨
(α,β,k)

( X̃) − R̃
∨
(α,β,k)

( X̃).

The boundary region is the union of upper boundary region and lower boundary region, which means BnI I I
(α,β,k)

( X̃) =
U BnI I I

(α,β,k)
( X̃) ∪ LBnI I I

(α,β,k)
( X̃).

If the upper approximation contains at least one kind of quantitative information, and the lower approximation must 
contain two kinds of quantitative information, the following model in Definition 4.6 can be applied.

Definition 4.6. Suppose I = (U , A, V , f ) is an information system, R ⊆ A. For any X̃ ∈ F(U ), 0 ≤ β < α ≤ 1, k ∈ R, 0 ≤ k ≤
|U | and x ∈ U . The fourth kind of distance-based double-quantitative rough fuzzy set (Db-DqIV-RFS) model is denoted as

R̃
∨
(α,β,k)

( X̃) = {x ∈ U | |[x]R̃ ∩ X̃ |
|[x]R̃ | > β ∨ |[x]R̃ ∩ X̃ | > k},

R̃
∧
(α,β,k)

( X̃) = {x ∈ U | |[x]R̃ ∩ X̃ |
|[x]R̃ | ≥ α ∧ (|[x]R̃ | − |[x]R̃ ∩ X̃ |) ≤ k}.

Based on these two operators, we determine the Db-DqIV-RFS model, which is also denoted by (U , ̃R
∨
(α,β,k)

( X̃),

R̃
∨
(α,β,k)

( X̃)).

In Db-DqIV-RFS model, the disjunction operator is applied to reflect the relative quantitative information and absolute 
quantitative information in upper approximation, and the conjunction operator is applied to reflect the relative quantitative 
information and absolute quantitative information in lower approximation. Each element, in upper approximation, exhibits 
relative quantification or absolute quantification with the disjunction operator; as to each element in lower approximation, 
it contains both relative quantification and absolute quantification at the same time with the conjunction operator.

Theorem 4.4. Db-DqIV-RFS can be also defined as

R̃
∨
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩ X̃ | > min(β · |[x]R̃ |,k)},
R̃

∧
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩ X̃ | ≥ max(α · |[x]R̃ |, |[x]R̃ | − k)}.

Proof. The proof of upper approximation and lower approximation is the same as the proofs of Theorem 4.3 and Theo-
rem 4.1. �

From the Definition 4.6 about the upper approximation and lower approximation in Db-DqIV-RFS model, we obtain 

R̃
∨
(α,β,k)

( X̃) = R̃(α,β)( X̃) ∪ R̃k( X̃) and R̃
∧
(α,β,k)

( X̃) = R̃(α,β)( X̃) ∩ R̃k( X̃).

The positive region, negative region, upper boundary region, lower boundary region are presented as follows.

PosI V
(α,β,k)( X̃) = R̃

∨
(α,β,k)

( X̃) ∩ R̃
∧
(α,β,k)

( X̃);

NegI V
(α,β,k)( X̃) =∼ (R̃

∨
(α,β,k)

( X̃) ∪ R̃
∧
(α,β,k)

( X̃));

U BnI V
(α,β,k)( X̃) = R̃

∨
(α,β,k)

( X̃) − R̃
∧
(α,β,k)

( X̃);

LBnI V
(α,β,k)( X̃) = R̃

∧
(α,β,k)

( X̃) − R̃
∨
(α,β,k)

( X̃).
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The boundary region is the union of upper boundary region and lower boundary region, which means BnI V
(α,β,k)

( X̃) =
U BnI V

(α,β,k)
( X̃) ∪ LBnI V

(α,β,k)
( X̃).

Example 4.3 (Continuation of Example 3.1). We also consider the values of the parameters α = 0.60, β = 0.45 and grade 
k = 1.6. The upper and lower approximations of Db-DqI-RFS are shown below.

R̃
∧
(α,β,k)

( X̃) = {x4, x6, x8};
R̃

∧
(α,β,k)

( X̃) = {x1, x4}.
Accordingly, the elements of the positive region, negative region, upper boundary region, and lower boundary region are 

as follows.

PosI
(α,β,k)( X̃) = {x4};

NegI
(α,β,k)( X̃) = {x2, x3, x5, x7};

U BnI
(α,β,k)( X̃) = {x6, x8};

LBnI
(α,β,k)( X̃) = {x1}.

The patient x4 belongs to the positive region means that x4 really needs to receive treatment; x2, x3, x5 and x7 belong to 
the negative region means that they do not need to get treatments; x6 and x8 belong to the upper boundary region means 
that although they need to be observed to make decisions about whether they need to get treatment, they are more likely 
not to receive treatment; x1 belongs to the lower boundary region means that although x1 needs to be observed to make 
decisions about whether he (or she) needs to get treatment, he (or she) is more likely to receive treatment.

The upper and lower approximations of Db-DqII-RFS are shown below.

R̃
∧
(α,β,k)

( X̃) = {x4, x6, x8};

R̃
∨
(α,β,k)

( X̃) = {x1, x2, x4, x7}.
The elements of the positive region, negative region, upper boundary region, and lower boundary region are as follows.

PosI I
(α,β,k)( X̃) = {x4};

NegI I
(α,β,k)( X̃) = {x3, x5};

U BnI I
(α,β,k)( X̃) = {x6, x8};

LBnI I
(α,β,k)( X̃) = {x1, x2, x7}.

The patient x4 belongs to the positive region means that x4 really needs to receive treatment; x3 and x5 belong to the 
negative region means that they do not need to get treatments; x6 and x8 belong to the upper boundary region means that 
although they need to be observed to make decisions about whether they need to get treatment, they are more likely not 
to receive treatment; x1, x2 and x7 belong to the lower boundary region means that although they need to be observed to 
make decisions about whether they need to get treatment, they are more likely to receive treatment.

The upper and lower approximations of Db-DqIII-RFS are shown below.

R̃
∨
(α,β,k)

( X̃) = {x1, x2, x3, x4, x6, x7, x8};

R̃
∨
(α,β,k)

( X̃) = {x1, x2, x4, x7}.
The elements of the positive region, negative region, upper boundary region, and lower boundary region are as follows.

PosI I I
(α,β,k)( X̃) = {x1, x2, x4, x7};

NegI I I
(α,β,k)( X̃) = {x5};

U BnI I I
(α,β,k)( X̃) = {x3, x6, x8};

I I I ˜
LBn(α,β,k)(X) = ∅.
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The patients x1, x2, x4 and x7 belong to the positive region means that they really need to receive treatment; x5 belongs 
to the negative region means that he (or she) does not need to get treatments; x3, x6 and x8 belong to the upper boundary 
region means that although they need to be observed to make decisions about whether they need to get treatment, they 
are more likely not to receive treatment.

The upper and lower approximations of Db-DqIV-RFS are shown below.

R̃
∨
(α,β,k)

( X̃) = {x1, x2, x3, x4, x6, x7, x8};

R̃
∧
(α,β,k)

( X̃) = {x1, x4}.
The elements of the positive region, negative region, upper boundary region, and lower boundary region are as follows.

PosI V
(α,β,k)( X̃) = {x1, x4};

NegI V
(α,β,k)( X̃) = {x5};

U BnI V
(α,β,k)( X̃) = {x2, x3, x6, x7, x8};

LBnI V
(α,β,k)( X̃) = ∅.

Patients x1 and x4 belong to the positive region means that they really need to receive treatment; x5 belongs to the 
negative region means that he (or she) does not need to get treatments; x2, x3, x6, x7 and x8 belong to the upper boundary 
region means that although they need to be observed to make decisions about whether they need to get treatment, they 
are more likely not to receive treatment.

5. Decision rules with parameters variation for four kinds of Db-Dq-RFS models

The circumstance of double quantitative information included in both upper and lower approximations can form four 
kinds of Db-Dq-RFS models, and the decision rules in each Db-Dq-RFS model is much more complex than Dq-DTRS model 
[26]. We consider all the elements of U separately to analyze the decision rules with parameters variation in each Db-Dq-RFS 
model. According to the conditions α and β meeting 0 ≤ β < α ≤ 1, it is easy to see that β · |[x]R̃ | < α · |[x]R̃ |. There are 
three cases of the value of k between β · |[x]R̃ | and α · |[x]R̃ |. The following Fig. 5.1 is about the different cases of the grade k, 
the items (1), (2) and (3) (in Fig. 5.1) represent the Case 1 (for k ≤ β · |[x]R̃ |), Case 2 (for β · |[x]R̃ | < k ≤ α · |[x]R̃ |) and Case 
3 (for k > α · |[x]R̃ |), respectively.

Here, we analyze the decision rules in detail with the parameters changing of the proposed four kinds of Db-Dq-RFS 
models, respectively. For each x ∈ U and a given fuzzy set X̃ , we can easily get the values of α · |[x]R̃ |, β · |[x]R̃ |, |[x]R̃ ∩ X̃ |
and |[x]R̃ | − k. Because β · |[x]R̃ | < α · |[x]R̃ | always holds for each object x ∈ U , we should first compare the values between 
k and β · |[x]R̃ |, and compare the values between k and α · |[x]R̃ |, and then judge which item in Fig. 5.1 it is satisfied.

5.1. Effect of parameters on decision rules in Db-DqI-RFS

We discuss the values of k step by step ranging from small to large values. First, we study Case 1 where k ≤ β · |[x]R̃ |.
Case 1: (See item (1) in Fig. 5.1.) For k ≤ β · |[x]R̃ |, which means that max(β · |[x]R̃ |, k) = β · |[x]R̃ |, we can get R̃

∧
(α,β,k)

( X̃) =
{x ∈ U ||[x]R̃ ∩ X̃ | > β · |[x]R̃ |}.

Fig. 5.1. Different cases of the grade k.
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(1) If |[x]R̃ ∩ X̃ | ≤ k, then we get x ∈∼ R̃
∧
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI
(α,β,k)

( X̃).

(2) If k < |[x]R̃ ∩ X̃| ≤ β · |[x]R̃ |, then we have x ∈∼ R̃
∧
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI
(α,β,k)

( X̃).

(3) If β · |[x]R | < |[x]R̃ ∩ X̃ | ≤ α · |[x]R̃ |, then we get x ∈ R̃
∧
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI
(α,β,k)

( X̃).

(4) If |[x]R̃ ∩ X̃ | > α · |[x]R̃ |, then x ∈ R̃
∧
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∧
(α,β,k)

( X̃), decide PosI
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI
(α,β,k)

( X̃).

After discussing Case 1 of k ≤ β · |[x]R̃ |, we then study Case 2 of β · |[x]R̃ | < k ≤ α · |[x]R̃ | about decision rules in the 
following.

Case 2: (See (2) in Fig. 5.1.) For β · |[x]R̃ | < k ≤ α · |[x]R̃ |, which means that max(β · |[x]R̃ |, k) = k, we have R̃
∧
(α,β,k)

( X̃) =
{x ∈ U ||[x]R̃ ∩ X̃ | > k}.

(1) If |[x]R̃ ∩ X̃ | ≤ β · |[x]R̃ |, then x ∈∼ R̃
∧
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI
(α,β,k)

( X̃).

(2) If β · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ k, then x ∈∼ R̃
∧
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI
(α,β,k)

( X̃).

(3) If k < |[x]R̃ ∩ X̃| ≤ α · |[x]R̃ |, then x ∈ R̃
∧
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI
(α,β,k)

( X̃).

(4) If |[x]R̃ ∩ X̃ | > α · |[x]R̃ |, then x ∈ R̃
∧
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∧
(α,β,k)

( X̃), decide PosI
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI
(α,β,k)

( X̃).

The following Case 3 concerns k > α · |[x]R̃ |, we analyze the corresponding decision rules.

Case 3: (See (3) in Fig. 5.1.) For k > α · |[x]R̃ |, which means that max(β · |[x]R̃ |, k) = k, so ̃R
∧
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩ X̃ | > k}.

(1) If |[x]R̃ ∩ X̃ | ≤ β · |[x]R̃ |, then we can get x ∈∼ R̃
∧
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI
(α,β,k)

( X̃).

(2) If β · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ α · |[x]R̃ |, then x ∈∼ R̃
∧
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI
(α,β,k)

( X̃).

(3) If α · |[x]R | < |[x]R̃ ∩ X̃ | ≤ k, then x ∈∼ R̃
∧
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∧
(α,β,k)

( X̃), decide LBnI
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI
(α,β,k)

( X̃).

(4) If |[x]R̃ ∩ X̃ | > k, then one has x ∈ R̃
∧
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∧
(α,β,k)

( X̃), decide PosI
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI
(α,β,k)

( X̃).

Through the three cases discussed above, we have the variation of values of the parameters to the decision rules in 
Db-DqI-RFS model.

5.2. Effect of parameters on decision rules in Db-DqII-RFS

We discuss the value of k step by step moving from small to large, and first study the Case 1 about k ≤ β · |[x]R̃ | in the 
following.

Case 1: (See (1) in Fig. 5.1.) For k ≤ β · |[x]R̃ |, it means that max(β · |[x]R̃ |, k) = β · |[x]R̃ |, we can get R̃
∧
(α,β,k)

( X̃) = {x ∈
U ||[x]R̃ ∩ X̃ | > β · |[x]R̃ |}.
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(1) If |[x]R̃ ∩ X̃| ≤ k, then we can get x ∈∼ R̃
∧
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide NegI I
(α,β,k)

( X̃).

(2) If k < |[x]R̃ ∩ X̃| ≤ β · |[x]R̃ |, then we can get x ∈∼ R̃
∧
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide NegI I
(α,β,k)

( X̃).

(3) If β · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ α · |[x]R̃ |, then we can get x ∈ R̃
∧
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide U BnI I
(α,β,k)

( X̃).

(4) If |[x]R̃ ∩ X̃| > α · |[x]R̃ |, then we can get x ∈ R̃
∧
(α,β,k)

( X̃) and x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I
(α,β,k)

( X̃).

After discussing Case 1 of k ≤ β · |[x]R̃ |, we then study Case 2 of β · |[x]R̃ | < k ≤ α · |[x]R̃ | about decision rules.

Case 2: (See (2) in Fig. 5.1.) For β · |[x]R̃ | < k ≤ α · |[x]R̃ |, which means that max(β · |[x]R̃ |, k) = k, so R̃
∧
(α,β,k)

( X̃) = {x ∈
U ||[x]R̃ ∩ X̃ | > k}.

(1) If |[x]R̃ ∩ X̃| ≤ β · |[x]R̃ |, then we can get x ∈∼ R̃
∧
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide NegI I
(α,β,k)

( X̃).

(2) If β · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ k, then x ∈∼ R̃
∧
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide NegI I
(α,β,k)

( X̃).

(3) If β · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ α · |[x]R̃ |, then we can get x ∈ R̃
∧
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide Pos(α,β,k)( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide U BnI I
(α,β,k)

( X̃).

(4) If |[x]R̃ ∩ X̃| > α · |[x]R̃ |, then we can get x ∈ R̃
∧
(α,β,k)

( X̃) and x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I
(α,β,k)

( X̃).

Case 3 concerns k > α · |[x]R̃ |, here we analyze the corresponding decision rules.

Case 3: (See (3) in Fig. 5.1.) For k > α · |[x]R̃ |, which means that max(β · |[x]R̃ |, k) = k, so ̃R
∧
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩ X̃ | > k}.

(1) If |[x]R̃ ∩ X̃| ≤ β · |[x]R̃ |, then we can get x ∈∼ R̃
∧
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide NegI I
(α,β,k)

( X̃).

(2) If β · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ α · |[x]R̃ |, then we can get x ∈∼ R̃
∧
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide NegI I
(α,β,k)

( X̃).
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(3) If α · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ k, then we can get x ∈∼ R̃
∧
(α,β,k)

( X̃) and x ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I
(α,β,k)

( X̃).

(4) If |[x]R̃ ∩ X̃ | > k, then we can get x ∈ R̃
∧
(α,β,k)

( X̃) and x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I
(α,β,k)

( X̃).

By studying the three cases discussed above, we obtain a clear correspondence of the variation of values and their impact 
on the values variation of parameters to the decision rules in Db-DqII-RFS model.

5.3. Effect of parameters on decision rules in Db-DqIII-RFS

We discuss the value of k step by step starting from small values, and first study Case 1 where k ≤ β · |[x]R̃ |.
Case 1: (See (1) in Fig. 5.1.) For k ≤ β · |[x]R̃ |, it means that min(β · |[x]R̃ |, k) = k, we can get R̃

∨
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩
X̃| > k}.

(1) If |[x]R̃ ∩ X̃ | ≤ k, then we can get x ∈∼ R̃
∨
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide NegI I I
(α,β,k)

( X̃).

(2) If k < |[x]R̃ ∩ X̃| ≤ β · |[x]R̃ |, then we can get x ∈ R̃
∨
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide U BnI I I
(α,β,k)

( X̃).

(3) If β · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ α · |[x]R̃ |, then we can get x ∈ R̃
∨
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide U BnI I I
(α,β,k)

( X̃).

(4) If |[x]R̃ ∩ X̃ | > α · |[x]R̃ |, then we can get x ∈ R̃
∨
(α,β,k)

( X̃) and x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃).

After discussing Case 1 with k ≤ β · |[x]R̃ |, we then study Case 2 with β · |[x]R̃ | < k ≤ α · |[x]R̃ | with regard to decision 
rules.

Case 2: (See (2) in Fig. 5.1.) For β · |[x]R̃ | < k ≤ α · |[x]R̃ |, which means that min(β · |[x]R̃ |, k) = β · |[x]R̃ |, we can get 

R̃
∨
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩ X̃| > β · |[x]R̃ |}.

(1) If |[x]R̃ ∩ X̃ | ≤ β · |[x]R̃ |, then we can get x ∈∼ R̃
∨
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide NegI I I
(α,β,k)

( X̃).

(2) If β · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ k, then we can get x ∈ R̃
∨
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide U BnI I I
(α,β,k)

( X̃).

(3) If k < |[x]R̃ ∩ X̃| ≤ α · |[x]R̃ |, then we can get x ∈ R̃
∨
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide U BnI I I
(α,β,k)

( X̃).

(4) If |[x]R̃ ∩ X̃ | > α · |[x]R̃ |, then we can get x ∈ R̃
∨
(α,β,k)

( X̃) and x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃).
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Case 3 is about k > α · |[x]R̃ |. We can analyze the corresponding decision rules.

Case 3: (See (3) in Fig. 5.1.) For k > α · |[x]R̃ |, which means that min(β · |[x]R̃ |, k) = β · |[x]R̃ |, we can get R̃
∨
(α,β,k)

( X̃) = {x ∈
U ||[x]R̃ ∩ X̃ | > β · |[x]R̃ |}.

(1) If |[x]R̃ ∩ X̃| ≤ β · |[x]R̃ |, then we can get x ∈∼ R̃
∨
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide NegI I I
(α,β,k)

( X̃).

(2) If β · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ α · |[x]R̃ |, then we can get x ∈ R̃
∨
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∨
(α,β,k)

( X̃), decide U BnI I I
(α,β,k)

( X̃).

(3) If α · |[x]R̃ | < |[x]R̃ ∩ X̃| ≤ k, then we can get x ∈ R̃
∨
(α,β,k)

( X̃) and x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃).

(4) If |[x]R̃ ∩ X̃| > k, then we can get x ∈ R̃
∨
(α,β,k)

( X̃) and x ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃).

Through the three cases discussed above, we form a clear correspondence between the variation of values of the param-
eters and their impact on the decision rules in the Db-DqIII-RFS model.

5.4. Effect of parameters on decision rules in Db-DqIV-RFS

We discuss the value of k step by step, we first study the Case 1 when k ≤ β · |[x]R̃ | in the following.

Case 1: (See (1) in Fig. 5.1.) For k ≤ β · |[x]R̃ |, it means that min(β · |[x]R̃ |, k) = k, we can get R̃
∨
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩
X̃| > k}.

(1) If |[x]R̃ ∩ X̃| ≤ k, then we can get x ∈∼ R̃
∨
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI V
(α,β,k)

( X̃),

(2) If k < |[x]R̃ ∩ X̃| ≤ β · |[x]R̃ |, then we can get x ∈ R̃
∨
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI V
(α,β,k)

( X̃).

(3) If β · |[x]R | < |[x]R̃ ∩ X̃ | ≤ α · |[x]R̃ |, then we can get x ∈ R̃
∨
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI V
(α,β,k)

( X̃).

(4) If |[x]R̃ ∩ X̃| > α · |[x]R̃ |, then we can get x ∈ R̃
∨
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∧
(α,β,k)

( X̃), decide PosI V
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI V
(α,β,k)

( X̃).

After discussing Case 1 with k ≤ β · |[x]R̃ |, we then study Case 2 when β · |[x]R̃ | < k ≤ α · |[x]R̃ | about decision rules.
Case 2: (See (2) in Fig. 5.1.) For β · |[x]R̃ | < k ≤ α · |[x]R̃ |, which means that min(β · |[x]R̃ |, k) = β · |[x]R̃ |, we can get 

R̃
∨
(α,β,k)

( X̃) = {x ∈ U ||[x]R̃ ∩ X̃| > β · |[x]R̃ |}.

(1) If |[x]R̃ ∩ X̃| ≤ β · |[x]R̃ |, then we can get x ∈∼ R̃
∨
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI V
(α,β,k)

( X̃),

(2) If β · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ k, then we can get x ∈ R̃
∨
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI V
(α,β,k)

( X̃).

(3) If k < |[x]R̃ ∩ X̃| ≤ α · |[x]R̃ |, then we can get x ∈ R̃
∨
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI V
(α,β,k)

( X̃).

(4) If |[x]R̃ ∩ X̃| > α · |[x]R̃ |, then we can get x ∈ R̃
∨
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∧
(α,β,k)

( X̃), decide PosI V
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI V
(α,β,k)

( X̃).
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Table 5.1
Effect of parameters on decision rules for Case 1 in different models.

|[xi ]R̃ ∩ X̃ | Db-DqI-RFS Db-DqII-RFS Db-DqIII-RFS Db-DqIV-RFS

[0,k] ≥ |[xi ]R̃ | − k NegI
(α,β,k)

( X̃) LBnI I
(α,β,k)

( X̃) LBnI I I
(α,β,k)

( X̃) NegI V
(α,β,k)

( X̃)

< |[xi ]R̃ | − k NegI I
(α,β,k)

( X̃) NegI I I
(α,β,k)

( X̃)

(k, β|[xi ]R̃ |] ≥ |[xi ]R̃ | − k NegI
(α,β,k)

( X̃) LBnI I
(α,β,k)

( X̃) PosI I I
(α,β,k)

( X̃) U BnI V
(α,β,k)

( X̃)

< |[xi ]R̃ | − k NegI I
(α,β,k)

( X̃) U BnI I I
(α,β,k)

( X̃)

(β|[xi ]R̃ |,α|[xi ]R̃ |] ≥ |[xi ]R̃ | − k U BnI
(α,β,k)

( X̃) PosI I
(α,β,k)

( X̃) PosI I I
(α,β,k)

( X̃) U BnI V
(α,β,k)

( X̃)

< |[xi ]R̃ | − k U BnI I
(α,β,k)

( X̃) U BnI I I
(α,β,k)

( X̃)

(α|[xi ]R̃ |, |U |] ≥ |[xi ]R̃ | − k PosI
(α,β,k)

( X̃) PosI I
(α,β,k)

( X̃) PosI I I
(α,β,k)

( X̃) PosI V
(α,β,k)

( X̃)

< |[xi ]R̃ | − k U BnI
(α,β,k)

( X̃) U BnI V
(α,β,k)

( X̃)

Table 5.2
Effect of parameters on decision rules for Case 2 in different models.

|[xi ]R̃ ∩ X̃ | Db-DqI-RFS Db-DqII-RFS Db-DqIII-RFS Db-DqIV-RFS

[0, β · |[xi ]R̃ |] ≥ |[xi ]R̃ | − k NegI
(α,β,k)

( X̃) LBnI I
(α,β,k)

( X̃) LBnI I I
(α,β,k)

( X̃) NegI V
(α,β,k)

( X̃)

< |[xi ]R̃ | − k NegI I
(α,β,k)

( X̃) NegI I I
(α,β,k)

( X̃)

(β · |[xi ]R̃ |,k] ≥ |[xi ]R̃ | − k NegI
(α,β,k)

( X̃) LBnI I
(α,β,k)

( X̃) PosI I I
(α,β,k)

( X̃) U BnI V
(α,β,k)

( X̃)

< |[xi ]R̃ | − k NegI I
(α,β,k)

( X̃) U BnI I I
(α,β,k)

( X̃)

(k,α|[xi ]R̃ |] ≥ |[xi ]R̃ | − k U BnI
(α,β,k)

( X̃) PosI I
(α,β,k)

( X̃) PosI I I
(α,β,k)

( X̃) U BnI V
(α,β,k)

( X̃)

< |[xi ]R̃ | − k U BnI I
(α,β,k)

( X̃) U BnI I I
(α,β,k)

( X̃)

(α|[xi ]R̃ |, |U |] ≥ |[xi ]R̃ | − k PosI
(α,β,k)

( X̃) PosI I
(α,β,k)

( X̃) PosI I I
(α,β,k)

( X̃) PosI V
(α,β,k)

( X̃)

< |[xi ]R̃ | − k U BnI
(α,β,k)

( X̃) U BnI V
(α,β,k)

( X̃)

The following Case 3 is about k > α · |[x]R̃ |, we can also analyze the corresponding decision rules.

Case 3: (See (3) in Fig. 5.1.) For k > α · |[x]R̃ |, which means that min(β · |[x]R̃ |, k) = β · |[x]R̃ |, we can get R̃
∨
(α,β,k)

( X̃) = {x ∈
U ||[x]R̃ ∩ X̃ | > β · |[x]R̃ |}.

(1) If |[x]R̃ ∩ X̃ | ≤ β · |[x]R̃ |, then we can get x ∈∼ R̃
∨
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI V
(α,β,k)

( X̃),

(2) If β · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ α · |[x]R̃ |, then we can get x ∈ R̃
∨
(α,β,k)

( X̃) and x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI V
(α,β,k)

( X̃).

(3) If α · |[x]R̃ | < |[x]R̃ ∩ X̃ | ≤ k, then we can get x ∈ R̃
∨
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∧
(α,β,k)

( X̃), decide PosI V
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI V
(α,β,k)

( X̃).

(4) If |[x]R̃ ∩ X̃ | > k, then we can get x ∈ R̃
∨
(α,β,k)

( X̃),

• |[x]R̃ ∩ X̃ | ≥ |[x]R̃ | − k, then x ∈ R̃
∧
(α,β,k)

( X̃), decide PosI V
(α,β,k)

( X̃);

• |[x]R̃ ∩ X̃ | < |[x]R̃ | − k, then x ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI V
(α,β,k)

( X̃).

Through the three cases discussed above, we can get a clearly corresponding of the values variation of parameters to the 
decision rules in Db-DqIV-RFS model.

It is easy to see that the maximum and minimum values of |[xi]R̃ ∩ X̃| are 0 and |U |, respectively. Tables 5.1–5.3 are 
comparisons of the decision rules with parameters variation for four kinds of Db-Dq-RFS models.
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Table 5.3
Effect of parameters on decision rules for Case 3 in different models.

|[xi ]R̃ ∩ X̃ | Db-DqI-RFS Db-DqII-RFS Db-DqIII-RFS Db-DqIV-RFS

[0, β · |[xi ]R̃ |] ≥ |[xi ]R̃ | − k NegI
(α,β,k)

( X̃) LBnI I
(α,β,k)

( X̃) LBnI I I
(α,β,k)

( X̃) NegI V
(α,β,k)

( X̃)

< |[xi ]R̃ | − k NegI I
(α,β,k)

( X̃) NegI I I
(α,β,k)

( X̃)

(β · |[xi ]R̃ |,α · |[xi ]R̃ |] ≥ |[xi ]R̃ | − k NegI
(α,β,k)

( X̃) LBnI I
(α,β,k)

( X̃) PosI I I
(α,β,k)

( X̃) U BnI V
(α,β,k)

( X̃)

< |[xi ]R̃ | − k NegI I
(α,β,k)

( X̃) U BnI I I
(α,β,k)

( X̃)

(α|[xi ]R̃ |,k] ≥ |[xi ]R̃ | − k LBnI
(α,β,k)

( X̃) LBnI I
(α,β,k)

( X̃) PosI I I
(α,β,k)

( X̃) PosI V
(α,β,k)

( X̃)

< |[xi ]R̃ | − k NegI
(α,β,k)

( X̃) U BnI V
(α,β,k)

( X̃)

(k, |U |] ≥ |[xi ]R̃ | − k PosI
(α,β,k)

( X̃) PosI I
(α,β,k)

( X̃) PosI I I
(α,β,k)

( X̃) PosI V
(α,β,k)

( X̃)

< |[xi ]R̃ | − k U BnI
(α,β,k)

( X̃) U BnI V
(α,β,k)

( X̃)

Table 5.4
Statistical results.

|[xi ]R̃ | |[xi ]R̃ ∩ X̃ | |[xi ]R̃ | − |[xi ]R̃ ∩ X̃ | |[xi ]R̃ ∩ X̃ |/|[xi ]R̃ | β · |[xi ]R̃ | α · |[xi ]R̃ | |[xi ]R̃ | − k

x1 2.36 1.46 0.90 0.62 1.06 1.42 0.76
x2 2.92 1.45 1.47 0.50 1.31 1.75 1.32
x3 3.98 1.70 2.28 0.43 1.79 2.39 2.38
x4 3.27 1.96 1.31 0.60 1.47 1.96 1.67
x5 3.26 1.42 1.84 0.44 1.47 1.96 1.66
x6 3.80 1.74 2.06 0.46 1.71 2.28 2.20
x7 3.14 1.57 1.57 0.50 1.41 1.88 1.54
x8 3.64 1.67 1.97 0.46 1.64 2.18 2.04

5.5. An illustrative example

Example 5.1 (Continuation of Example 3.1). We consider the parameters α = 0.60, β = 0.45 and grade k = 1.6. Based on the 
normalized information system shown in Table 3.2, Table 5.4 provides the statistical results for each object in U . In what 
follows, we present the analysis of decision rules of each elements in U for given parameters α, β and grade k to verify 
the decision rule analysis completed in Subsections 5.1–5.4.

From the statistical results presented in Table 5.4, we can accurately classify each object into four disjoint regions, namely 
positive region, negative region, upper boundary region and lower boundary region, and then make corresponding decisions 
based on the four different regions in different Db-Dq-RFS models.

(1) For the object x1, α · |[x1]R̃ | = 1.42, β · |[x1]R̃ | = 1.06, and |[x1]R̃ ∩ X̃| = 1.46. So k > α · |[x1]R̃ |, α · |[x1]R̃ | < |[x1]R̃ ∩ X̃| < k
and |[x1]R̃ ∩ X̃ | > |[x1]R̃ | − k. In the four kinds of Db-Dq-RFS models, it takes the Case 3 (because k > α · |[x1]R̃ |), 
and in Case 3, α · |[x1]R̃ | < |[x1]R̃ ∩ X̃ | < k. In Db-DqI-RFS model, x1 ∈∼ R̃

∧
(α,β,k)

( X̃) and x1 ∈ R̃
∧
(α,β,k)

( X̃), decide 

LBnI
(α,β,k)

( X̃); in Db-DqII-RFS model, x1 ∈∼ R̃
∧
(α,β,k)

( X̃) and x1 ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I
(α,β,k)

( X̃); in Db-DqIII-RFS 

model, x1 ∈ R̃
∨
(α,β,k)

( X̃) and x1 ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃); in Db-DqIV-RFS model, x1 ∈ R̃
∨
(α,β,k)

( X̃) and x1 ∈
R̃

∧
(α,β,k)

( X̃), decide PosI V
(α,β,k)

( X̃).

(2) For the object x2, α · |[x2]R̃ | = 1.75, β · |[x2]R̃ | = 1.31, and |[x2]R̃ ∩ X̃ | = 1.45. So β · |[x2]R̃ | < k < α · |[x2]R̃ |, β · |[x2]R̃ | <
|[x2]R̃ ∩ X̃| < k and |[x2]R̃ ∩ X̃ | > |[x2]R̃ | − k. In the four kinds of Db-Dq-RFS models, it takes the Case 2, and in Case 2, 

β · |[x2]R̃ | < |[x2]R̃ ∩ X̃ | < k. In Db-DqI-RFS model, x2 ∈∼ R̃
∧
(α,β,k)

( X̃) and x2 ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI
(α,β,k)

( X̃); in Db-

DqII-RFS model, x2 ∈∼ R̃
∧
(α,β,k)

( X̃) and x2 ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I
(α,β,k)

( X̃); in Db-DqIII-RFS model, x2 ∈ R̃
∨
(α,β,k)

( X̃)

and x2 ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃); in Db-DqIV-RFS model, x2 ∈ R̃
∨
(α,β,k)

( X̃) and x2 ∈∼ R̃
∧
(α,β,k)

( X̃), decide 

U BnI V
(α,β,k)

( X̃).

(3) For the object x3, α · |[x3]R̃ | = 2.39, β · |[x3]R̃ | = 1.79, and |[x3]R̃ ∩ X̃ | = 1.70. So k < β · |[x3]R̃ |, k < |[x3]R̃ ∩ X̃| < β · |[x3]R̃ |
and |[x3]R̃ ∩ X̃ | < |[x3]R̃ | −k. In the four kinds of Db-Dq-RFS models, it takes the Case 1, and in Case 1, k < |[x3]R̃ ∩ X̃| <
β · |[x3]R̃ |. In Db-DqI-RFS model, x3 ∈∼ R̃

∧
(α,β,k)

( X̃) and x3 ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI
(α,β,k)

( X̃); in Db-DqII-RFS model, 
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x3 ∈∼ R̃
∧
(α,β,k)

( X̃) and x3 ∈∼ R̃
∨
(α,β,k)

( X̃), decide NegI I
(α,β,k)

( X̃); in Db-DqIII-RFS model, x3 ∈ R̃
∨
(α,β,k)

( X̃) and x3 ∈
∼ R̃

∨
(α,β,k)

( X̃), decide U BnI I I
(α,β,k)

( X̃); in Db-DqIV-RFS model, x3 ∈ R̃
∨
(α,β,k)

( X̃) and x2 ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI V
(α,β,k)

( X̃).

(4) For the object x4, α · |[x4]R̃ | = 1.96, β · |[x4]R̃ | = 1.47, and |[x4]R̃ ∩ X̃ | = 1.96. So β · |[x4]R̃ | < k < α · |[x4]R̃ |, |[x4]R̃ ∩ X̃| >
α · |[x4]R̃ | and |[x4]R̃ ∩ X̃ | > |[x4]R̃ | − k. In the four kinds of Db-Dq-RFS models, it takes the Case 2, and in Case 2, 

|[x2]R̃ ∩ X̃ | > α · |[x4]R̃ | and |[x4]R̃ ∩ X̃| > |[x4]R̃ | − k. In Db-DqI-RFS model, x4 ∈ R̃
∧
(α,β,k)

( X̃) and x4 ∈ R̃
∧
(α,β,k)

( X̃), decide 

PosI
(α,β,k)

( X̃); in Db-DqII-RFS model, x4 ∈ R̃
∧
(α,β,k)

( X̃) and x4 ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I
(α,β,k)

( X̃); in Db-DqIII-RFS model, 

x4 ∈ R̃
∨
(α,β,k)

( X̃) and x4 ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃); in Db-DqIV-RFS model, x4 ∈ R̃
∨
(α,β,k)

( X̃) and x4 ∈ R̃
∧
(α,β,k)

( X̃), 

decide PosI V
(α,β,k)

( X̃).

(5) For the object x5, α · |[x5]R̃ | = 1.96, β · |[x5]R̃ | = 1.47, and |[x5]R̃ ∩ X̃ | = 1.42. So β · |[x5]R̃ | < k < α · |[x5]R̃ |, |[x5]R̃ ∩ X̃| <
β · |[x5]R̃ | and |[x5]R̃ ∩ X̃ | < |[x5]R̃ | − k. In the four kinds of Db-Dq-RFS models, it takes the Case 2, and in Case 2, 

|[x5]R̃ ∩ X̃ | < β · |[x5]R̃ | and |[x5]R̃ ∩ X̃| < |[x5]R̃ | −k. In Db-DqI-RFS model, x5 ∈∼ R̃
∧
(α,β,k)

( X̃) and x5 ∈∼ R̃
∧
(α,β,k)

( X̃), decide 

NegI
(α,β,k)

( X̃); in Db-DqII-RFS model, x5 ∈∼ R̃
∧
(α,β,k)

( X̃) and x5 ∈∼ R̃
∨
(α,β,k)

( X̃), decide NegI I
(α,β,k)

( X̃); in Db-DqIII-RFS 

model, x5 ∈∼ R̃
∨
(α,β,k)

( X̃) and x5 ∈∼ R̃
∨
(α,β,k)

( X̃), decide NegI I I
(α,β,k)

( X̃); in Db-DqIV-RFS model, x5 ∈∼ R̃
∨
(α,β,k)

( X̃) and 

x5 ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI V
(α,β,k)

( X̃).

(6) For the object x6, α · |[x6]R̃ | = 2.28, β · |[x6]R̃ | = 1.71, and |[x6]R̃ ∩ X̃| = 1.74. So k < β · |[x6]R̃ |, β · |[x6]R̃ | <
|[x6]R̃ ∩ X̃ | < α · |[x6]R̃ | and |[x6]R̃ ∩ X̃ | < |[x6]R̃ | − k. In the four kinds of Db-Dq-RFS models, it takes the Case 1, and 

in Case 1, β · |[x6]R̃ | < |[x6]R̃ ∩ X̃ | < α · |[x6]R̃ | and |[x6]R̃ ∩ X̃| < |[x6]R̃ | − k. In Db-DqI-RFS model, x6 ∈∼ R̃
∧
(α,β,k)

( X̃)

and x6 ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI
(α,β,k)

( X̃); in Db-DqII-RFS model, x6 ∈ R̃
∧
(α,β,k)

( X̃) and x6 ∈∼ R̃
∨
(α,β,k)

( X̃), decide 

U BnI I
(α,β,k)

( X̃); in Db-DqIII-RFS model, x6 ∈ R̃
∨
(α,β,k)

( X̃) and x6 ∈∼ R̃
∨
(α,β,k)

( X̃), decide U BnI I I
(α,β,k)

( X̃); in Db-DqIV-RFS 

model, x6 ∈ R̃
∨
(α,β,k)

( X̃) and x6 ∈∼ R̃
∧
(α,β,k)

( X̃), decide U BnI V
(α,β,k)

( X̃).

(7) For the object x7, α · |[x7]R̃ | = 1.88, β · |[x7]R̃ | = 1.41, and |[x7]R̃ ∩ X̃ | = 1.57. So β · |[x7]R̃ | < k < α · |[x7]R̃ |, β · |[x7]R̃ | <
|[x7]R̃ ∩ X̃| < k and |[x7]R̃ ∩ X̃| > |[x7]R̃ | − k. In the four kinds of Db-Dq-RFS models, it takes the Case 2, and in Case 2, 

β · |[x7]R̃ | < |[x7]R̃ ∩ X̃ | < k. In Db-DqI-RFS model, x7 ∈∼ R̃
∧
(α,β,k)

( X̃) and x7 ∈∼ R̃
∧
(α,β,k)

( X̃), decide NegI
(α,β,k)

( X̃); in Db-

DqII-RFS model, x7 ∈∼ R̃
∧
(α,β,k)

( X̃) and x7 ∈ R̃
∨
(α,β,k)

( X̃), decide LBnI I
(α,β,k)

( X̃); in Db-DqIII-RFS model, x7 ∈ R̃
∨
(α,β,k)

( X̃)

and x7 ∈ R̃
∨
(α,β,k)

( X̃), decide PosI I I
(α,β,k)

( X̃); in Db-DqIV-RFS model, x7 ∈ R̃
∨
(α,β,k)

( X̃) and x7 ∈∼ R̃
∧
(α,β,k)

( X̃), decide 

U BnI V
(α,β,k)

( X̃).

(8) For the object x8, α · |[x8]R̃ | = 2.18, β · |[x8]R̃ | = 1.64, and |[x8]R̃ ∩ X̃ | = 1.67. So k < β · |[x8]R̃ |, β · |[x8]R̃ | < |[x8]R̃ ∩ X̃ | < α ·
|[x8]R̃ | and |[x8]R̃ ∩ X̃ | < |[x8]R̃ | −k. In the four kinds of Db-Dq-RFS models, it takes the Case 1, and in Case 1, β · |[x8]R̃ | <
|[x8]R̃ ∩ X̃ | < α · |[x8]R̃ | and |[x8]R̃ ∩ X̃| < |[x8]R̃ | −k. In Db-DqI-RFS model, x8 ∈∼ R̃

∧
(α,β,k)

( X̃) and x8 ∈∼ R̃
∧
(α,β,k)

( X̃), decide 

NegI
(α,β,k)

( X̃); in Db-DqII-RFS model, x8 ∈∼ R̃
∧
(α,β,k)

( X̃) and x8 ∈∼ R̃
∨
(α,β,k)

( X̃), decide U BnI I
(α,β,k)

( X̃); in Db-DqIII-RFS 

model, x8 ∈ R̃
∨
(α,β,k)

( X̃) and x8 ∈∼ R̃
∨
(α,β,k)

( X̃), decide U BnI I I
(α,β,k)

( X̃); in Db-DqIV-RFS model, x8 ∈ R̃
∨
(α,β,k)

( X̃) and x8 ∈
∼ R̃

∧
(α,β,k)

( X̃), decide U BnI V
(α,β,k)

( X̃).

Table 5.5
Disjoint regions of four kinds of Db-Dq-RFS models.

Model Positive region Negative region Boundary region

Upper Lower

Db-DqI-RFS x4 x2, x3, x5, x7 x6, x8 x1

Db-DqII-RFS x4 x3, x5 x6, x8 x1, x2, x7

Db-DqIII-RFS x1, x2, x4, x7 x5 x3, x6, x8 ∅
Db-DqIV-RFS x1, x4 x5 x2, x3, x6, x7, x8 ∅
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It is easy to verify that the above analysis from the view of parameters on the decision rules of the whole elements in 
U is consistent with the decision regions obtained from the upper and lower approximations in each Db-Dq-RFS model (see
Table 5.5).

6. Experimental studies

The models presented in [11] provide us with an approach capable of dealing with specified numeric information system, 
where the data in the information system are fuzzy and the values of each data are located in the range [0, 1]. When the 
information system is not fuzzy, some preprocessing is required if we want to use the methods in [11]. This constitutes a 
serious limitation when we apply the methods to practical problems. As it has mentioned in the Introduction, we do not 
need to preprocess the data for any numeric information system when we use the models presented in this paper. We can 
directly use the proposed four kinds of Db-Dq-RFS models to handle raw data. Compared with the rough set method which 
needs preprocessing, the presented methods reduce the loss of information in the preprocessing phase. In this section, 
to introduce and interpret the effectiveness of dealing with real-life information system of the proposed four kinds of 
Db-Dq-RFS models, we conduct some experiments on a PC with Windows 7, Inter (R) Core (TM) i7-4770M CPU 3.40 GHZ 
and 16 GB Memory. Publicly available datasets come from the UCI data repository are shown in Table 6.1.

The elements in the decision regions are closely related with the values of the tested parameters α, β and grade k. 
Generally, different parameters and different grades may result in different decision regions for each dataset. In the previous 
work [26], we discussed the decision rules on three cases regard to the most representative three pairs of parameters α
and β , specifically as follows. α + β < 1, α + β = 1 and α + β > 1. Here, we also consider three pairs of parameters α, β , 
which are α = 0.6, β = 0.2 (satisfies α + β < 1), α = 0.7, β = 0.3 (satisfies α + β = 1), and α = 0.8, β = 0.4 (satisfies 
α + β > 1). As expressed in Table 6.1, we randomly select the grade k = 4 for dataset “SHU”, k = 340 for dataset “VEH”, 
k = 215 for dataset “WCU”, k = 700 for dataset “WRE” and k = 2330 for dataset “WWH”, respectively. As to the target fuzzy 
concept X̃ , we use the computer program to randomly generate a number between 0 and 1 for each x ∈ U to make sure 
that it is randomly selected, then we get a series of numbers, which represent the membership degree for elements in the 
fuzzy set X̃ . The following Tables 6.2–6.6 indicate the number of elements of decision regions for five tested datasets using 
different methods. For the convenience of comparison, we use “M1” and “M2” to represent the two models in reference 

Table 6.1
Dataset description.

Datasets Number of data Features Grade

Shuttle Landing Control (SHU) 15 7 4
Vehicle (VEH) 846 18 340
Wholesale customers (WCU) 440 6 215
Winequality-Red (WRE) 1599 12 700
Winequality-White (WWH) 4898 12 2330

Table 6.2
Number of elements located in decision regions (SHU).

α = 0.6, β = 0.2 α = 0.7, β = 0.3 α = 0.8, β = 0.4

P O S N EG U Bn LBn P O S N EG U Bn LBn P O S N EG U Bn LBn

SHU M1 0 0 0 15 0 0 0 15 0 0 0 15
M2 15 0 0 0 15 0 0 0 15 0 0 0

I 2 9 2 2 0 11 4 0 0 11 4 0
I I 4 0 1 10 4 0 1 10 4 0 1 10
I I I 9 3 2 1 9 3 2 1 9 3 2 1
I V 4 0 9 2 0 0 15 0 0 0 15 0

Table 6.3
Number of elements located in decision regions (VEH).

α = 0.6, β = 0.2 α = 0.7, β = 0.3 α = 0.8, β = 0.4

P O S N EG U Bn LBn P O S N EG U Bn LBn P O S N EG U Bn LBn

VEH M1 0 0 0 846 0 0 0 846 0 0 0 846
M2 661 0 0 185 604 0 0 242 526 0 0 320

I 656 0 60 130 22 87 634 103 0 189 656 1
I I 656 0 60 130 656 0 60 130 656 0 60 130
I I I 746 0 53 47 746 0 53 47 746 0 53 47
I V 746 0 53 47 125 0 721 0 1 0 845 0
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Table 6.4
Number of elements located in decision regions (WCU).

α = 0.6, β = 0.2 α = 0.7, β = 0.3 α = 0.8, β = 0.4

P O S N EG U Bn LBn P O S N EG U Bn LBn P O S N EG U Bn LBn

WCU M1 0 440 0 0 0 440 0 0 0 440 0 0
M2 339 0 0 101 311 0 0 129 266 0 0 174

I 0 29 354 57 0 77 354 9 0 82 354 4
I I 354 0 0 86 354 0 0 86 354 0 0 86
I I I 440 0 0 0 440 0 0 0 440 0 0 0
I V 57 0 383 0 9 0 431 0 4 0 436 0

Table 6.5
Number of elements located in decision regions (WRE).

α = 0.6, β = 0.2 α = 0.7, β = 0.3 α = 0.8, β = 0.4

P O S N EG U Bn LBn P O S N EG U Bn LBn P O S N EG U Bn LBn

WRE M1 0 63 0 1536 0 744 0 855 0 1382 0 217
M2 1304 0 0 295 1176 0 0 423 961 0 0 638

I 1364 0 0 235 0 152 1364 83 0 232 1364 3
I I 1364 0 0 235 1364 0 0 235 1364 0 0 235
I I I 1599 0 0 0 1599 0 0 0 1599 0 0 0
I V 1599 0 0 0 83 0 1516 0 3 0 1596 0

Table 6.6
Number of elements located in decision regions (WWH).

α = 0.6, β = 0.2 α = 0.7, β = 0.3 α = 0.8, β = 0.4

P O S N EG U Bn LBn P O S N EG U Bn LBn P O S N EG U Bn LBn

WWH M1 0 1640 0 3258 0 3838 0 1060 0 4718 0 180
M2 4171 0 0 727 3654 0 0 1244 3114 0 0 1784

I 110 7 166 4615 0 4587 276 35 0 4620 276 2
I I 276 0 0 4622 276 0 0 4622 276 0 0 4622
I I I 4898 0 0 0 4898 0 0 0 4898 0 0 0
I V 4725 0 173 0 35 0 4863 0 2 0 4896 0

[11], where symbols M1 and M2 stand for conjunction and disjunction double-quantitative decision-theoretic rough fuzzy 
set model, respectively. The results obtained from M1 and M2 follow the preprocessing process [11].

For example, we take the data VEH to analyze the results of M1 and M2 shown in Tables 6.2–6.6; the analysis of other 
datasets can be obtained in a similar manner. For dataset VEH, M1 classifies all objects into the lower boundary region; M2 
classifies 611 objects into positive region and 185 objects into lower boundary region when α = 0.6, β = 0.2, 604 objects 
into positive region and 242 objects into lower boundary region when α = 0.7, β = 0.3, 526 objects into positive region 
and 320 objects into lower boundary region when α = 0.8, β = 0.4. From Tables 6.2–6.6, we can easily obtain that these 
two methods M1 and M2 divide each dataset into at most two classes. Moreover, objects can only be divided into one class 
in many cases. Such classification methods are not practical in real-life applications. It is necessary to propose new models 
to overcome defects of M1 and M2.

When α = 0.6, β = 0.2: Db-DqI-RFS classifies 656 objects into positive region, 60 objects into upper boundary region 
and 130 objects into lower boundary region; Db-DqII-RFS classifies 656 objects into positive region, 60 objects into upper 
boundary region and 130 objects into lower boundary region; Db-DqIII-RFS classifies 746 objects into positive region, 53 
objects into upper boundary region and 47 objects into lower boundary region; Db-DqIV-RFS classifies 746 objects into 
positive region, 53 objects into upper boundary region and 47 objects into lower boundary region. When α = 0.7, β = 0.3: 
Db-DqI-RFS classifies 22 objects into positive region, 87 objects into negative region, 634 objects into upper boundary region 
and 103 objects into lower boundary region; Db-DqII-RFS classifies 656 objects into positive region, 60 objects into upper 
boundary region and 130 objects into lower boundary region; Db-DqIII-RFS classifies 746 objects into positive region, 53 
objects into upper boundary region and 47 objects into lower boundary region; Db-DqIV-RFS classifies 125 objects into posi-
tive region, 721 objects into upper boundary region. When α = 0.8, β = 0.4: Db-DqI-RFS classifies 189 objects into negative 
region, 656 objects into upper boundary region and 1 object into lower boundary region; Db-DqII-RFS classifies 656 objects 
into positive region, 60 objects into upper boundary region and 130 objects into lower boundary region; Db-DqIII-RFS clas-
sifies 746 objects into positive region, 53 objects into upper boundary region and 47 objects into lower boundary region; 
Db-DqIV-RFS classifies 1 object into positive region, 845 objects into upper boundary region.

From the above analysis, we can draw some conclusions. (1) Db-Dq-RFS models presented in this paper can partition the 
universe of discourse more accurately, generate less losses of information, and are applicable to a much wider environment 
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than M1 and M2. (2) The decision regions in each dataset for Db-Dq-RFS models vary with the change of the parameters 
α and β when we keep the k constant. The change shows a certain regularity for four kinds of Db-Dq-RFS models: the 
number of elements in positive region becomes smaller or remains the same when the parameters α and β become larger; 
the number of elements in negative region becomes larger or remains the same when the parameters α and β become 
larger; the number of elements in upper boundary region becomes larger or remains the same when the parameters α
and β become larger; the number of elements in lower boundary region becomes smaller or remains the same when 
the parameters α and β assume higher values. In other words, given two pairs of (α, β) for each dataset, (α1, β1) and 
(α2, β2) which satisfy the condition α1 ≤ α2, β1 ≤ β2, we obtain that P O S�

(α1,β1,k)
( X̃) ⊇ P O S�

(α2,β2,k)
( X̃); N EG�

(α1,β1,k)
( X̃) ⊆

N EG�
(α2,β2,k)

( X̃); U Bn�
(α1,β1,k)

( X̃) ⊆ U Bn�
(α2,β2,k)

( X̃); LBn�
(α1,β1,k)

( X̃) ⊇ LBn�
(α2,β2,k)

( X̃), where � ∈ {I, I I, I I I, I V }.

7. Conclusions

When we use classical rough sets to tackle continuous data, a discretization should be implemented, this preprocessing 
will reduce the classification accuracy and result in a certain loss of contained information. We need to develop novel 
rough set models to deal with continuous data, not to discretize the continuous data. Meanwhile, PRS and GRS are two 
fundamental rough set model expansions that achieve strong fault tolerance capabilities by utilizing single quantitative 
descriptions. If both relative quantitative information and absolute quantitative information are contained in upper and 
lower approximations of the generalized rough set model, then we call the generalized rough set as the double-quantitative 
rough set model. The relative measure and absolute measure reflect relative and absolute accuracy or fault tolerance from 
two different quantitative viewpoints. Thus, both of the two quantification exhibit a close and supplementary relationship, 
and each one actually has its own representation virtues and application environments.

The proposed Db-Dq-RFS models perform a developed double quantification of the relative quantitative information and 
absolute quantitative information. These new models are directional expansions of Pawlak rough set model and satisfy 
the quantitative completeness properties, exhibit much stronger double fault tolerance capabilities to compare with the 
existing double-quantitative rough set models. This paper introduces a distance matrix to measure the real-valued data, 
and investigates distance-based fuzzy similarity relation to formulate the Dq-Dq-RFS models. Moreover, after presenting the 
four kinds of Db-Dq-RFS models, we study the decision rules with parameters variation for proposed Db-Dq-RFS models. 
Among this article, we use examples to interpret and analyze the concepts we investigated. We also test the decision rules 
of proposed models with parameters variation from five UCI datasets, and make a comparison with two existing models 
from the resulting number of elements in joint decision regions. This paper gives a framework of Db-Dq-RFS model, in the 
future work, several aspects of these four models are worth investigating, including the parameters selection method, the 
uncertainty measures and underlying properties of the models with respect to the concept and decision rules.

Acknowledgements

This work is supported by Natural Science Foundation of China (No. 11671109, No. 11671111, No. 61472463, No. 
61772002), Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJ1709221), and 
Wentao Li is supported by the China Scholarship Council under Grant No. 201606120161.

References

[1] F. Angiulli, S. Basta, C. Pizzuti, Distance-based detection and prediction of outliers, IEEE Trans. Knowl. Data Eng. 18 (2) (2006) 145–160.
[2] N. Azam, J.T. Yao, Analyzing uncertainty of probabilistic rough set region with game-theoretic rough sets, Int. J. Approx. Reason. 55 (1) (2014) 142–155.
[3] H. Bai, Y. Ge, J. Wang, D. Li, Y. Liao, X. Zheng, A method for extracting rules from spatial data based on rough fuzzy sets, Knowl.-Based Syst. 57 (2014) 

28–40.
[4] D. Chen, Y. Yang, Attribute reduction for heterogeneous data based on the combination of classical and fuzzy rough set models, IEEE Trans. Fuzzy Syst. 

22 (5) (2014) 1325–1334.
[5] Y. Chen, Y. Xue, Y. Ma, F. Xu, Measures of uncertainty for neighborhood rough sets, Knowl.-Based Syst. 120 (2017) 226–235.
[6] A. Christopher, M. Andrew, S. Stefan, Locally weighted learning, Artif. Intell. Rev. 11 (1–5) (1997) 11–73.
[7] W.D. Cook, M. Kress, L.M. Seiford, A general framework for distance-based consensus in ordinal ranking models, Eur. J. Oper. Res. 96 (2) (1997) 392–397.
[8] E. Diday, Recent progress in distance and similarity measures in pattern recognition, in: Proceedings of Second International Joint Conference on 

Pattern Recognition, 1974, p. 534.
[9] H. Dou, X. Yang, X. Song, H. Yu, W.Z. Wu, J. Yang, Decision-theoretic rough set: a multicost strategy, Knowl.-Based Syst. 91 (2016) 71–83.

[10] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst. 17 (2–3) (1990) 191–209.
[11] B. Fan, E.C.C. Tsang, W. Xu, J. Yu, Double-quantitative rough fuzzy set based decisions: a logical operators method, Inf. Sci. 378 (2017) 264–281.
[12] T. Feng, H.T. Fan, J.S. Mi, Uncertainty and reduction of variable precision multigranulation fuzzy rough sets based on three-way decisions, Int. J. Approx. 

Reason. 85 (2017) 36–58.
[13] V.D. Gesu, V. Starovoitov, Distance-based functions for image comparison, Pattern Recognit. Lett. 20 (2) (1999) 207–214.
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